我们研究了自然非凸形公式下的不对称矩阵分解问题,并具有任意的过多参数化。考虑了无模型设置,对观察到的矩阵的秩或单数值的假设最小,在该矩阵的秩或奇异值中,全局最优值证明过度拟合。我们表明,带有小随机初始化的香草梯度下降顺序恢复了观察到的矩阵的主要成分。因此,当配备适当的早期停止时,梯度下降会产生观察到的矩阵的最佳低级别近似,而无需显式正则化。我们提供了近似误差,迭代复杂性,初始化大小和步骤大小之间关系的尖锐表征。我们的复杂性界限几乎不含尺寸,并取决于对数近似误差,与先前的工作相比,对步骤和初始化的宽大要求明显更大。我们的理论结果为行为梯度下降提供了准确的预测,显示了与数值实验的良好一致性。
translated by 谷歌翻译
最近以来,在理解与overparameterized模型非凸损失基于梯度的方法收敛性和泛化显著的理论进展。尽管如此,优化和推广,尤其是小的随机初始化的关键作用的许多方面都没有完全理解。在本文中,我们迈出玄机通过证明小的随机初始化这个角色的步骤,然后通过梯度下降的行为类似于流行谱方法的几个迭代。我们还表明,从小型随机初始化,这可证明是用于overparameterized车型更加突出这种隐含的光谱偏差,也使梯度下降迭代在一个特定的轨迹走向,不仅是全局最优的,但也很好期广义的解决方案。具体而言,我们专注于通过天然非凸制剂重构从几个测量值的低秩矩阵的问题。在该设置中,我们表明,从小的随机初始化的梯度下降迭代的轨迹可以近似分解为三个阶段:(Ⅰ)的光谱或对准阶段,其中,我们表明,该迭代具有一个隐含的光谱偏置类似于频谱初始化允许我们表明,在该阶段中进行迭代,并且下面的低秩矩阵的列空间被充分对准的端部,(II)一鞍回避/细化阶段,我们表明,该梯度的轨迹从迭代移动离开某些简并鞍点,和(III)的本地细化阶段,其中,我们表明,避免了鞍座后的迭代快速收敛到底层低秩矩阵。底层我们的分析是,可能有超出低等级的重建计算问题影响overparameterized非凸优化方案的分析见解。
translated by 谷歌翻译
The nonconvex formulation of matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient descent (GD) is the simplest yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this work, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in logarithmic amount of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence and show that a larger initialization can be used as more samples are available. We observe that implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
在本文中,我们研究了从许多嘈杂的随机线性测量值中恢复低级别基质的问题。我们考虑以下设置的设置,即基地矩阵的等级是未知的,并使用矩阵变量的过度指定的分组表示,其中全局最佳解决方案过拟合,并且与基础基础真相不符。然后,我们使用梯度下降和小的随机初始化解决了相关的非凸问题。我们表明,只要测量运算符能够满足受限的等轴测特性(RIP),其等级参数缩放具有地面真相矩阵等级,而不是使用过度指定的矩阵变量进行缩放,那么梯度下降迭代就会在特定的轨迹上朝向地面。 - 正确矩阵并在适当停止时获得了几乎信息理论上的最佳恢复。然后,我们提出了一种基于共同持有方法的有效的早期停止策略,并表明它可以检测到几乎最佳的估计量。此外,实验表明,所提出的验证方法也可以有效地用于图像恢复,并具有深层图像先验,从而使图像过度参与了深层网络。
translated by 谷歌翻译
提供了一种强大而灵活的模型,可用于代表多属数据和多种方式相互作用,在科学和工程中的各个领域中发挥着现代数据科学中的不可或缺的作用。基本任务是忠实地以统计和计算的有效方式从高度不完整的测量中恢复张量。利用Tucker分解中的张量的低级别结构,本文开发了一个缩放的梯度下降(Scaledgd)算法,可以直接恢复具有定制频谱初始化的张量因子,并表明它以与条件号无关的线性速率收敛对于两个规范问题的地面真理张量 - 张量完成和张量回归 - 一旦样本大小高于$ n ^ {3/2} $忽略其他参数依赖项,$ n $是维度张量。这导致与现有技术相比的低秩张力估计的极其可扩展的方法,这些方法具有以下至少一个缺点:对记忆和计算方面的对不良,偏移成本高的极度敏感性,或差样本复杂性保证。据我们所知,Scaledgd是第一算法,它可以同时实现近最佳统计和计算复杂性,以便与Tucker分解进行低级张力完成。我们的算法突出了加速非耦合统计估计在加速非耦合统计估计中的适当预处理的功率,其中迭代改复的预处理器促进轨迹的所需的不变性属性相对于低级张量分解中的底层对称性。
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
本文研究了在存在重尾且可能是不对称噪声的情况下,低级矩阵的完成,我们旨在估计一组高度不完整的噪声条目,以估算一个基础的低级矩阵。尽管在过去的十年中,矩阵的完成问题吸引了很多关注,但是当观察结果被重尾噪音污染时,仍然缺乏理论上的理解。先前的理论缺乏解释经验结果,无法捕获估计误差对噪声水平的最佳依赖性。在本文中,我们采用自适应的Huber损失来容纳重尾噪声,当损失函数中的参数经过精心设计以平衡异常值的大偏差和稳健性时,这是对大型且可能不对称的误差的鲁棒性。然后,我们通过平衡的低级数burer-monteiro矩阵分解和梯度不错,并具有稳健的光谱初始化,提出了有效的非凸算法。我们证明,在仅在误差分布上的第二刻条件下,而不是次高斯的假设下,由提议的算法生成的迭代元素的欧几里得误差会快速减少几何,直到达到最小值 - 最佳统计估计误差,这具有相同的相同在次级案件中订购。这一重大进步背后的关键技术是一个强大的一对一分析框架。我们的模拟研究证实了理论结果。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
低秩矩阵恢复的现有结果在很大程度上专注于二次损失,这享有有利的性质,例如限制强的强凸/平滑度(RSC / RSM)以及在所有低等级矩阵上的良好调节。然而,许多有趣的问题涉及更一般,非二次损失,这不满足这些属性。对于这些问题,标准的非耦合方法,例如秩约为秩约为预定的梯度下降(A.K.A.迭代硬阈值)和毛刺蒙特罗分解可能具有差的经验性能,并且没有令人满意的理论保证了这些算法的全球和快速收敛。在本文中,我们表明,具有非二次损失的可证实低级恢复中的关键组成部分是规律性投影oracle。该Oracle限制在适当的界限集中迭代到低级矩阵,损耗功能在其上表现良好并且满足一组近似RSC / RSM条件。因此,我们分析配备有这样的甲骨文的(平均)投影的梯度方法,并证明它在全球和线性地收敛。我们的结果适用于广泛的非二次低级估计问题,包括一个比特矩阵感测/完成,个性化排名聚集,以及具有等级约束的更广泛的广义线性模型。
translated by 谷歌翻译
批准方法,例如批处理[Ioffe和Szegedy,2015],体重[Salimansand Kingma,2016],实例[Ulyanov等,2016]和层归一化[Baet al。,2016]已广泛用于现代机器学习中。在这里,我们研究了体重归一化方法(WN)方法[Salimans和Kingma,2016年],以及一种称为重扎式投影梯度下降(RPGD)的变体,用于过多散热性最小二乘回归。 WN和RPGD用比例G和一个单位向量W重新绘制权重,因此目标函数变为非convex。我们表明,与原始目标的梯度下降相比,这种非凸式配方具有有益的正则化作用。这些方法适应性地使重量正规化并收敛于最小L2规范解决方案,即使初始化远非零。对于G和W的某些步骤,我们表明它们可以收敛于最小规范解决方案。这与梯度下降的行为不同,梯度下降的行为仅在特征矩阵范围内的一个点开始时才收敛到最小规范解,因此对初始化更敏感。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
Higher-order multiway data is ubiquitous in machine learning and statistics and often exhibits community-like structures, where each component (node) along each different mode has a community membership associated with it. In this paper we propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel positing that memberships need not be discrete, but instead are convex combinations of latent communities. We establish the identifiability of our model and propose a computationally efficient estimation procedure based on the higher-order orthogonal iteration algorithm (HOOI) for tensor SVD composed with a simplex corner-finding algorithm. We then demonstrate the consistency of our estimation procedure by providing a per-node error bound, which showcases the effect of higher-order structures on estimation accuracy. To prove our consistency result, we develop the $\ell_{2,\infty}$ tensor perturbation bound for HOOI under independent, possibly heteroskedastic, subgaussian noise that may be of independent interest. Our analysis uses a novel leave-one-out construction for the iterates, and our bounds depend only on spectral properties of the underlying low-rank tensor under nearly optimal signal-to-noise ratio conditions such that tensor SVD is computationally feasible. Whereas other leave-one-out analyses typically focus on sequences constructed by analyzing the output of a given algorithm with a small part of the noise removed, our leave-one-out analysis constructions use both the previous iterates and the additional tensor structure to eliminate a potential additional source of error. Finally, we apply our methodology to real and simulated data, including applications to two flight datasets and a trade network dataset, demonstrating some effects not identifiable from the model with discrete community memberships.
translated by 谷歌翻译
机器学习理论中的主要开放问题之一是表征过度参数化的政权中的概括,在该制度中,大多数传统的概括范围变得不一致。在许多情况下,它们的失败可以归因于掩盖训练算法与基础数据分布之间的关键相互作用。为了解决这一缺点,我们提出了一个名为兼容性的概念,该概念以与数据相关的和算法相关的方式定量地表征了概括。通过考虑整个训练轨迹并专注于早期迭代的迭代术,兼容性充分利用了算法信息,因此可以提供更好的概括保证。我们通过理论上研究与梯度下降过度参数化的线性回归设置的兼容性来验证这一点。具体而言,我们执行与数据相关的轨迹分析,并在这种设置下得出足够的兼容性条件。我们的理论结果表明,从兼容性的意义上讲,概括性对问题实例的限制明显弱,而不是上次迭代分析。
translated by 谷歌翻译
We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译
Tensor decomposition serves as a powerful primitive in statistics and machine learning. In this paper, we focus on using power iteration to decompose an overcomplete random tensor. Past work studying the properties of tensor power iteration either requires a non-trivial data-independent initialization, or is restricted to the undercomplete regime. Moreover, several papers implicitly suggest that logarithmically many iterations (in terms of the input dimension) are sufficient for the power method to recover one of the tensor components. In this paper, we analyze the dynamics of tensor power iteration from random initialization in the overcomplete regime. Surprisingly, we show that polynomially many steps are necessary for convergence of tensor power iteration to any of the true component, which refutes the previous conjecture. On the other hand, our numerical experiments suggest that tensor power iteration successfully recovers tensor components for a broad range of parameters, despite that it takes at least polynomially many steps to converge. To further complement our empirical evidence, we prove that a popular objective function for tensor decomposition is strictly increasing along the power iteration path. Our proof is based on the Gaussian conditioning technique, which has been applied to analyze the approximate message passing (AMP) algorithm. The major ingredient of our argument is a conditioning lemma that allows us to generalize AMP-type analysis to non-proportional limit and polynomially many iterations of the power method.
translated by 谷歌翻译
这项工作表征了深度对线性回归优化景观的影响,表明尽管具有非凸性,但更深的模型具有更理想的优化景观。我们考虑了一个健壮且过度参数化的设置,其中测量的子集严重损坏了噪声,真正的线性模型将通过$ n $ layer-layer线性神经网络捕获。在负面方面,我们表明这个问题\ textit {do}具有良性景观:给定任何$ n \ geq 1 $,具有恒定概率,存在与既不是本地也不是全局最小值的地面真理的解决方案。但是,从积极的一面来看,我们证明,对于具有$ n \ geq 2 $的任何$ n $ layer模型,一种简单的次级方法变得忽略了这种``有问题的''解决方案;取而代之的是,它收敛于平衡的解决方案,该解决方案不仅接近地面真理,而且享有平坦的当地景观,从而避免了“早期停止”的需求。最后,我们从经验上验证了更深层模型的理想优化格局扩展到其他强大的学习任务,包括具有$ \ ell_1 $ -loss的深层矩阵恢复和深度relu网络。
translated by 谷歌翻译