文化领域代表了一个有用的概念,该概念在社会科学领域进行了交叉侵占。了解人类如何在社会中组织和联系他们的思想和行为有助于了解他们对不同问题的行为和态度。但是,塑造文化领域的共同特征的选择是任意的。所需的方法是一种可以利用大量在线数据(尤其是通过社交媒体)来识别没有临时假设,偏见或偏见的文化区域的方法。在这项工作中,我们通过引入一种基于微博帖子对大型数据集的自动分析来推断文化区域的方法来朝着这个方向迈出关键一步。我们的方法是基于以下原则:从人们之间讨论的主题可以推断出文化隶属关系。具体来说,我们衡量了美国社交媒体产生的书面话语中的区域差异。从地理标记的推文中内容词的频率分布,我们找到了“用法”区域热点,从那里我们得出了区域变化的主要成分。通过在这个较低维空间中数据的层次聚类,我们的方法得出了清晰的文化领域和定义它们的讨论主题。我们获得了一个明显的南北分离,主要受非裔美国人文化的影响,并进一步连续(东西方)和不连续的(城市农村)分裂,这些师为当今美国的文化领域提供了全面的了解。
translated by 谷歌翻译
Spanish is one of the most spoken languages in the globe, but not necessarily Spanish is written and spoken in the same way in different countries. Understanding local language variations can help to improve model performances on regional tasks, both understanding local structures and also improving the message's content. For instance, think about a machine learning engineer who automatizes some language classification task on a particular region or a social scientist trying to understand a regional event with echoes on social media; both can take advantage of dialect-based language models to understand what is happening with more contextual information hence more precision. This manuscript presents and describes a set of regionalized resources for the Spanish language built on four-year Twitter public messages geotagged in 26 Spanish-speaking countries. We introduce word embeddings based on FastText, language models based on BERT, and per-region sample corpora. We also provide a broad comparison among regions covering lexical and semantical similarities; as well as examples of using regional resources on message classification tasks.
translated by 谷歌翻译
在世界上语言中编码的文化多样性有风险,因为在越来越多的全球化的背景下,许多语言在过去几十年中濒临灭绝。为了保留这种多样性,首先是必要了解推动语言灭绝的东西,以及哪些机制可能能够共存。在这里,我们使用理论和数据驱动的角度研究语言转换机制。使用Twitter和人口普查数据对多语种社团进行大规模实证分析,产生了广泛的语言共存空间模式。它根据语言扬声器的混合来分离,在不相交语言域的边界上进行多种语言。要了解这些不同的国家如何出现,特别是变得稳定,我们提出了一种在学习其他语言时达到语言共存的模型,并且当双语有利于使用濒危语言时。在比例框架中进行的模拟突出了人们流动性引起的空间相互作用的重要性,以解释混合状态的稳定性或两个语言区域之间的边界的存在。此外,我们发现语言的历史至关重要,了解他们现在的状态。
translated by 谷歌翻译
Twitter也许是社交媒体更适合研究。它只需要几个步骤来获取信息,并且有很多库可以帮助这方面。尽管如此,知道特定事件是否在Twitter上表达是一个具有挑战性的任务,需要相当多的推文集合。该提案旨在促进研究员对自从2015年12月以来推出的Twitter采集的加工信息收集到Twitter上采矿活动的过程。事件可能与自然灾害,健康问题和人民的流动相关,等等可以与图书馆一起追求的研究。在这一贡献中提出了不同的应用程序,以说明图书馆的能力:对推文中发现的主题的探索性分析,这是西班牙语方言中的相似性研究以及不同国家的移动性报告。总之,呈现的Python库应用于不同的域,并在以阿拉伯语,英语,西班牙语和俄语的单词和双克单词的频率下检索一系列信息。以及与200多个国家或地区的地点之间的旅行数量有关的移动性信息。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
少数群体一直在使用社交媒体来组织社会运动,从而产生深远的社会影响。黑人生活问题(BLM)和停止亚洲仇恨(SAH)是两个成功的社会运动,在Twitter上蔓延开来,促进了抗议活动和活动,反对种族主义,并提高公众对少数群体面临的其他社会挑战的认识。但是,以前的研究主要对与用户的推文或访谈进行了定性分析,这些推文或访谈可能无法全面和有效地代表所有推文。很少有研究以严格,量化和以数据为中心的方法探讨了BLM和SAH对话中的Twitter主题。因此,在这项研究中,我们采用了一种混合方法来全面分析BLM和SAH Twitter主题。我们实施了(1)潜在的DIRICHLET分配模型,以了解顶级高级单词和主题以及(2)开放编码分析,以确定整个推文中的特定主题。我们通过#BlackLivesMatter和#Stopasianhate主题标签收集了超过一百万条推文,并比较了它们的主题。我们的发现表明,这些推文在深度上讨论了各种有影响力的话题,社会正义,社会运动和情感情感都是两种运动的共同主题,尽管每个运动都有独特的子主题。我们的研究尤其是社交媒体平台上的社会运动的主题分析,以及有关AI,伦理和社会相互作用的文献。
translated by 谷歌翻译
近几十年来,随着数据的可用,统计语言学已大大提高。这使研究人员能够研究语言的统计特性如何随时间变化。在这项工作中,我们使用来自Twitter的数据来探索英语和西班牙语,考虑到不同尺度的排名多样性:时间(从3到96小时),空间(从3公里到3000+km Radii)和语法(从字母组到五角形到Pentagrams) )。我们发现所有三个量表都是相关的。但是,最大的变化来自语法量表的变化。在最低的语法量表(会标)上,排名多样性曲线最相似,独立于其他量表,语言和国家的价值。随着语法量表的增长,等级多样性曲线的变化更大,具体取决于时间和空间量表以及语言和国家。我们还研究了Twitter特定令牌的统计数据:表情符号,主题标签和用户提及。这些特殊类型的令牌表现出一种sigmoid的行为作为等级多样性函数。我们的结果有助于量化似乎普遍存在的语言统计数据的各个方面,这可能导致变化。
translated by 谷歌翻译
自Covid-19大流行病开始以来,疫苗一直是公共话语中的重要话题。疫苗周围的讨论被两极分化,因为有些人认为它们是结束大流行的重要措施,而另一些人则犹豫不决或发现它们有害。这项研究调查了与Twitter上的Covid-19疫苗有关的帖子,并着重于对疫苗有负姿态的帖子。收集了与COVID-19疫苗相关的16,713,238个英文推文的数据集,收集了涵盖从2020年3月1日至2021年7月31日的该期间。我们使用Scikit-Learn Python库来应用支持向量机(SVM)分类器针对Covid-19疫苗的推文具有负姿态。总共使用了5,163个推文来训练分类器,其中有2,484个推文由我们手动注释并公开提供。我们使用Berttopic模型来提取和调查负推文中讨论的主题以及它们如何随时间变化。我们表明,随着疫苗的推出,对COVID-19疫苗的负面影响随时间而下降。我们确定了37个讨论主题,并随着时间的推移介绍了各自的重要性。我们表明,流行的主题包括阴谋讨论,例如5G塔和微芯片,但还涉及涉及疫苗接种安全性和副作用以及对政策的担忧。我们的研究表明,即使是不受欢迎的观点或阴谋论,与广受欢迎的讨论主题(例如Covid-19疫苗)配对时,也会变得广泛。了解问题和讨论的主题以及它们如何随着时间的变化对于政策制定者和公共卫生当局提供更好和时间的信息和政策,以促进未来类似危机的人口接种。
translated by 谷歌翻译
中国城乡地区建模差分应力表达可以更好地了解城市化对心理福祉的影响,在过去二十年中迅速发展的国家。本文研究了使用等级混合效应模型从329个县中超过65,000名用户在中国城乡压力的经验和表达的语言差异。我们分析了微博职位中的短语,题目主题和心理语言学的选择,提及压力,以更好地了解中国城乡社区心理压力的评价差异;然后我们将它们与盖子的大规模民意调查进行了比较。在控制社会经济和性别差异之后,我们发现农村社区倾向于表达情感和个人主题,如关系,健康和机会,而在城市地区的用户使用相对,时间和外部主题,如工作,政治和经济学。这些差异存在于对GDP和城市化的控制之外,表明在非常具体的环境中农村和城市居民之间的基本不同的生活方式,可以说是具有不同的压力来源。我们在盖洛普民意调查中找到了与城市化的身体,金融和社会健康的腐败趋势。
translated by 谷歌翻译
本文衡量了跨语言寄存器变化的稳定性。寄存器是各种与语言上下文相关的语言。寄存器及其上下文之间的关系是功能的:构成寄存器的语言特征是由交流状况的需求和约束所激发的。该观点假设寄存器应该是通用的,因此我们期望定义寄存器的语言外部环境与寄存器所包含的语言特征集之间存在稳定的关系。在本文中,使用在可比的交流情况下生成的Corpora在60种语言中比较寄存器特定语言中的变化来测试寄存器变化的普遍性和鲁棒性:推文和Wikipedia文章。我们的发现证实了寄存器变化实际上是普遍的预测。
translated by 谷歌翻译
This article charts the work of a 4 month project aimed at automatically identifying patterns of tweets popularity evolution using Machine Learning and Deep Learning techniques. To apprehend both the data and the extent of the problem, a straightforward clustering algorithm based on a point to point distance is used. Then, in an attempt to refine the algorithm, various analyses especially using feature extraction techniques are conducted. Although the algorithm eventually fails to automate such a task, this exercise raises a complex but necessary issue touching on the impact of virality on social networks.
translated by 谷歌翻译
大型语言数据集的可用性使数据驱动的方法能够研究语言改变。 Google Books Corpus Unigram频率数据集用于以八种语言调查排名动态。我们观察了1900年至2008年的Unigrams的等级变化,并将其与我们为分析开发的赖特 - 费舍尔灵感的模型进行了比较。该模型模拟中性进化过程,限制没有消失并添加单词。这项工作解释了模型的数学框架 - 用多项式过渡概率写作马尔可夫链 - 以展示单词频率如何变化。从我们的数据和我们的模型中的观察开始,Word Rank稳定性显示出两种类型的特点:(1)排名的增加/减少是单调,或(2)排名保持不变。基于我们的模型,高级词语往往更稳定,而低级词语往往更易挥发。有些词语以两种方式在两种方面发生变化:(a)通过累积小/减少等级和(b)的累积,通过增加/减少等级的冲击。我们所展示的所有语言中的大多数单词都是排名稳定,但并不像中立模型一样稳定。观察到的秒表和斯沃拉斯图单词在八种语言中排名稳定,这表明既定语言的语言符合性。这些签名提示所有语言的Unigram频率都以与纯粹中立的进化过程不一致的方式发生了变化。
translated by 谷歌翻译
历史流程表现出显着的多样性。尽管如此,学者们长期以来一直试图识别模式,并将历史行动者分类和对一些成功的影响。随机过程框架提供了一种结构化方法,用于分析大型历史数据集,允许检测有时令人惊讶的模式,鉴定内源性和外源对过程的相关因果作用者,以及不同历史案例的比较。随机过程的数据,分析工具和组织理论框架的组合使历史和考古中的传统叙事方法补充了传统的叙事方法。
translated by 谷歌翻译
尽管试图提高政治性别平等,但全球努力仍在努力确保女性的同等代表。这很可能与对权威妇女的性别偏见有关。在这项工作中,我们介绍了在线政治讨论中出现的性别偏见的全面研究。为此,我们在有关男性和女性政客的对话中收集了1000万条有关Reddit的评论,这使得对自动性别偏见检测进行了详尽的研究。我们不仅讨论了厌恶女性的语言,还解决了其他偏见的表现,例如以看似积极的情绪和主导地位归因于女性政客或描述符归因的差异的形式的仁慈性别歧视。最后,我们对调查语言和语言外暗示的政客进行了多方面的性别偏见研究。我们评估了5种不同类型的性别偏见,评估社交媒体语言和话语中存在的覆盖范围,组合,名义,感性和词汇偏见。总体而言,我们发现,与以前的研究相反,覆盖范围和情感偏见表明对女性政客的公共兴趣平等。名义和词汇分析的结果并没有明显的敌对或仁慈的性别歧视,这表明这种兴趣不像男性政客那样专业或尊重。女性政客通常以其名字命名,并与他们的身体,衣服或家庭有关。这是一种与男性相似的治疗方法。在现在被禁止的极右翼子列表中,这种差异最大,尽管性别偏见的差异仍然出现在右和左倾的子列表中。我们将策划的数据集释放给公众以进行未来研究。
translated by 谷歌翻译
即使互联网和社交媒体增加了人们可能会消耗的新闻和信息量,大多数用户才会暴露于加强其职位的内容,并将其与其他思想社区隔离。这种环境对我们的生活产生了极大的影响,如严重的政治极化,轻松传播的假新闻,政治极端主义,仇恨团体以及缺乏丰富的辩论等。因此,鼓励不同的用户组之间的对话并打破封闭的社区对健康社会的重要性。在本文中,我们使用自然语言处理技术和图形机学习算法来表征和研究在Twitter上打破社区的用户。特别是,我们从150万用户收集了900万个Twitter消息,并构建了转发网络。我们确定了他们的社区和与他们相关的讨论主题。通过这些数据,我们为社交媒体用户分类提供了一种机器学习框架,该分类检测到“社区分手”,即从他们的封闭社区到另一个用户的用户。三个Twitter极化政治数据集中的一个特征重要性分析表明,这些用户的PageRank值低,表明改变是推动的,因为他们的消息在其社区中没有响应。这种方法还允许我们确定其特定的兴趣主题,提供了这种用户的全面表征。
translated by 谷歌翻译
单词是基本的语言单位,通过含义将思想和事物联系起来。但是,单词在文本序列中并未独立出现。句法规则的存在导致相邻单词之间的相关性。此外,单词不是均匀分布的,而是遵循幂定律,因为带有纯语义内容的术语似乎比指定语法关系的术语要少得多。使用序数模式方法,我们对11种主要语言的词汇统计连接进行了分析。我们发现,语言用来表达单词关系的各种举止产生了独特的模式分布。值得注意的是,我们发现这些关系可以用马尔可夫2的模型建模,并且该结果对所有研究的语言都有普遍有效。此外,模式分布的波动可以使我们能够确定文本及其作者的历史时期。综上所述,这些结果强调了时间序列分析和信息理论方法的相关性,以理解自然语言的统计相关性。
translated by 谷歌翻译
情感是引人入胜的叙事的关键部分:文学向我们讲述了有目标,欲望,激情和意图的人。情绪分析是情感分析更广泛,更大的领域的一部分,并且在文学研究中受到越来越多的关注。过去,文学的情感维度主要在文学诠释学的背景下进行了研究。但是,随着被称为数字人文科学(DH)的研究领域的出现,在文学背景下对情绪的一些研究已经发生了计算转折。鉴于DH仍被形成为一个领域的事实,这一研究方向可以相对较新。在这项调查中,我们概述了现有的情感分析研究机构,以适用于文献。所评论的研究涉及各种主题,包括跟踪情节发展的巨大变化,对文学文本的网络分析以及了解文本的情感以及其他主题。
translated by 谷歌翻译
空间数据在应对与城市相关的任务中的作用近年来一直在增长。要在机器学习模型中使用它们,通常需要将它们转换为向量表示,这导致了空间数据表示学习领域的开发。还有一种越来越多的各种空间数据类型,提出了一种表示学习方法。迄今为止,公共交通时间表迄今未被用于一个城市地区的学习陈述的任务。在这项工作中,开发了一种方法来将公共交通可用性信息嵌入到矢量空间中。要对其申请进行实验,从48个城市收集公共交通时间表。使用H3空间索引方法,它们被分成微区域。还提出了一种方法来识别具有类似公共交通报价特征的地区。在其基础上,定义了该地区的公共交通报价的多层次类型。本文表明,所提出的表示方法可以识别城市之间具有相似公共交通特性的微区域,并且可用于评估城市中可用的公共交通的质量。
translated by 谷歌翻译
社交媒体平台主持了有关每天出现的各种主题的讨论。理解所有内容并将其组织成类别是一项艰巨的任务。处理此问题的一种常见方法是依靠主题建模,但是使用此技术发现的主题很难解释,并且从语料库到语料库可能会有所不同。在本文中,我们提出了基于推文主题分类的新任务,并发布两个相关的数据集。鉴于涵盖社交媒体中最重要的讨论点的广泛主题,我们提供了最近时间段的培训和测试数据,可用于评估推文分类模型。此外,我们在任务上对当前的通用和领域特定语言模型进行定量评估和分析,这为任务的挑战和性质提供了更多见解。
translated by 谷歌翻译
虽然现在几个月有多个Covid-19疫苗,但疫苗犹豫不决在美国的高水平。部分内容也已成为政治化,特别是自11月总统选举以来。在包括Twitter的社交媒体背景下,在此期间理解疫苗犹豫不决,可以为计算社会科学家和决策者提供有价值的指导。本文通过相对研究两个不同的时间段(选举前的一个,另一个月之后的另一个月,另一个月)采用相对研究的两个Twitter数据集,而不是研究单一的Twitter语料库,而不是研究单个Twitter语料库。数据收集和过滤方法。我们的研究结果表明,从2020年到2021年秋天的政治到Covid-19疫苗的讨论中讨论了重大转变。通过使用基于集群和机器学习的方法与采样和定性分析,我们发现了几种细粒度疫苗犹豫不决的原因,其中一些随着时间的推移而变得更加(或更少)。我们的结果还强调了去年这个问题的强烈极化和政治化。
translated by 谷歌翻译