由于独特的特征和约束,可信赖和可靠的数据传输是无线传感器网络(WSN)的一项艰巨任务。为了获取安全的数据传输并解决安全性和能源之间的冲突,在本文中,我们提出了一种基于进化游戏的安全聚类协议,具有模糊信任评估和WSN的离群检测。首先,提出了一种模糊的信任评估方法,以将传输证据转化为信任价值,同时有效地减轻了信任的不确定性。然后,提出了基于K-均值的离群检测方案,以进一步分析通过模糊信任评估或信任建议获得的大量信任值。它可以发现传感器节点之间的共同点和差异,同时提高异常检测的准确性。最后,我们提出了一种基于进化游戏的安全群集协议,以在选举群集头时进行安全保证和节能节能节省之间的权衡。失败的传感器节点可以通过隔离可疑节点来安全地选择自己的头部。仿真结果验证了我们的安全聚类协议可以有效地捍卫网络免受内部自私或折衷节点的攻击。相应地,及时的数据传输速率可以显着提高。
translated by 谷歌翻译
安全是工业无线传感器网络(IWSN)的主要问题之一。为了确保群集IWSN中的安全性,本文通过模糊信任评估和离群值检测(SCFTO)提出了一个安全的聚类协议(SCFTO)。首先,为了处理开放无线介质中的传输不确定性,采用间隔2型模糊逻辑控制器来估计信托。然后引入了基于密度的离群检测机制,以获取用于隔离群集头的自适应信任阈值。最后,提出了一种基于模糊的集群头选举方法,以在节能和安全保证之间达到平衡,以便具有更多残留能量或对其他节点置信度更高的正常传感器节点具有更高的概率,使其成为群集头。广泛的实验验证我们的安全聚类协议可以有效地捍卫网络免受内部恶意或受损节点的攻击。
translated by 谷歌翻译
5G边缘计算启用医学互联网(IOMT)是一项有效的技术,可提供分散的医疗服务,而设备到设备(D2D)通信是未来5G网络的有希望的范式。为了确保5G边缘计算中的安全可靠的通信和启用D2D的IOMT系统,本文介绍了一种智能的信任云管理方法。首先,提出了一种积极的培训机制来构建标准信任云。其次,可以通过推断和推荐来建立IOMT设备的个人信任云。第三,提出了一种信任分类方案来确定IOMT设备是否恶意。最后,提出了一种信任云更新机制,以使所提出的信任管理方法适应性和智能在开放的无线介质下。仿真结果表明,所提出的方法可以有效解决信任不确定性问题并提高恶意设备的检测准确性。
translated by 谷歌翻译
新兴的六代(6G)是异质无线网络的集成,它们可以在任何地方和任何时间网络中无缝支持。但是,6G应提供高质量的信任,以满足移动用户的期望。人工智能(AI)被认为是6G中最重要的组成部分之一。然后,基于AI的信任管理是提供可信赖和可靠的服务的有希望的范式。在本文中,为6G无线网络提供了一种生成的对抗性学习信任管理方法。首先审查了一些基于AI的典型信任管理方案,然后引入了潜在的异质和智能6G架构。接下来,开发了AI和信任管理的集成以优化情报和安全性。最后,提出的基于AI的信任管理方法用于确保聚类以实现可靠和实时的通信。仿真结果表明了其在保证网络安全和服务质量方面的出色性能。
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
近年来,物联网设备的数量越来越快,这导致了用于管理,存储,分析和从不同物联网设备的原始数据做出决定的具有挑战性的任务,尤其是对于延时敏感的应用程序。在车辆网络(VANET)环境中,由于常见的拓扑变化,车辆的动态性质使当前的开放研究发出更具挑战性,这可能导致车辆之间断开连接。为此,已经在5G基础设施上计算了云和雾化的背景下提出了许多研究工作。另一方面,有多种研究提案旨在延长车辆之间的连接时间。已经定义了车辆社交网络(VSN)以减少车辆之间的连接时间的负担。本调查纸首先提供了关于雾,云和相关范例,如5G和SDN的必要背景信息和定义。然后,它将读者介绍给车辆社交网络,不同的指标和VSN和在线社交网络之间的主要差异。最后,本调查调查了在展示不同架构的VANET背景下的相关工作,以解决雾计算中的不同问题。此外,它提供了不同方法的分类,并在雾和云的上下文中讨论所需的指标,并将其与车辆社交网络进行比较。与VSN和雾计算领域的新研究挑战和趋势一起讨论了相关相关工程的比较。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
动态复制是一种广泛的多拷贝路由方法,用于有效地应对移动机会主义网络中的间歇性连接。根据它,节点基于禁用后者的适合将消息传送到目的地的实用程序值,将消息副本转发到遇到的节点。该方法的普及源于其灵活性,在不需要特殊定制的情况下有效地在网络中有效地运行。尽管如此,其缺点是产生大量副本的趋势,这些副本消耗有限的资源,如能量和存储。为了解决问题,我们使观察到网络节点可以根据其实用程序值分组到描绘不同递送能力的集群中。我们利用此查找来转换基本转发策略,该策略是使用越来越多的效用的节点移动数据包,并实际上通过增加传递能力的集群来转发。新策略在Synernery中使用基本动态复制算法,可完全可配置,因此它可以与几乎任何实用程序功能一起使用。我们还扩展了我们的方法,同时使用两个实用程序功能,该功能在展示社会特征的移动网络中特别有效。通过在广泛的现实生活网络中进行实验,我们经验证明我们的方法在通过不同的连接特性下减少网络中的副本数量的整体数量,而没有同时阻碍输送效率。
translated by 谷歌翻译
互联网连接系统的规模大大增加,这些系统比以往任何时候都更接触到网络攻击。网络攻击的复杂性和动态需要保护机制响应,自适应和可扩展。机器学习,或更具体地说,深度增强学习(DRL),方法已经广泛提出以解决这些问题。通过将深入学习纳入传统的RL,DRL能够解决复杂,动态,特别是高维的网络防御问题。本文提出了对为网络安全开发的DRL方法进行了调查。我们触及不同的重要方面,包括基于DRL的网络 - 物理系统的安全方法,自主入侵检测技术和基于多元的DRL的游戏理论模拟,用于防范策略对网络攻击。还给出了对基于DRL的网络安全的广泛讨论和未来的研究方向。我们预计这一全面审查提供了基础,并促进了未来的研究,探讨了越来越复杂的网络安全问题。
translated by 谷歌翻译
联邦学习(FL)变得流行,并在训练大型机器学习(ML)模型的情况下表现出很大的潜力,而不会使所有者的原始数据曝光。在FL中,数据所有者可以根据其本地数据培训ML模型,并且仅将模型更新发送到模型更新,而不是原始数据到模型所有者进行聚合。为了提高模型准确性和培训完成时间的学习绩效,招募足够的参与者至关重要。同时,数据所有者是理性的,可能不愿意由于资源消耗而参与协作学习过程。为了解决这些问题,最近有各种作品旨在激励数据业主贡献其资源。在本文中,我们为文献中提出的经济和游戏理论方法提供了全面的审查,以设计刺激数据业主参加流程培训过程的各种计划。特别是,我们首先在激励机制设计中常用的佛罗里达州的基础和背景,经济理论。然后,我们审查博弈理论和经济方法应用于FL的激励机制的应用。最后,我们突出了一些开放的问题和未来关于FL激励机制设计的研究方向。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
智能物联网环境(iiote)由可以协作执行半自动的IOT应用的异构装置,其示例包括高度自动化的制造单元或自主交互收获机器。能量效率是这种边缘环境中的关键,因为它们通常基于由无线和电池运行设备组成的基础设施,例如电子拖拉机,无人机,自动引导车辆(AGV)S和机器人。总能源消耗从多种技术技术汲取贡献,使得能够实现边缘计算和通信,分布式学习以及分布式分区和智能合同。本文提供了本技术的最先进的概述,并说明了它们的功能和性能,特别关注资源,延迟,隐私和能源消耗之间的权衡。最后,本文提供了一种在节能IIOTE和路线图中集成这些能力技术的愿景,以解决开放的研究挑战
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
通信系统是自主UAV系统设计的关键部分。它必须解决不同的考虑因素,包括UAV的效率,可靠性和移动性。此外,多UAV系统需要通信系统,以帮助在UAV的团队中提供信息共享,任务分配和协作。在本文中,我们审查了在考虑在电力线检查行业的应用程序时支持无人机团队的通信解决方案。我们提供候选无线通信技术的审查{用于支持UAV应用程序中的通信。综述了这些候选技术的性能测量和无人机相关的频道建模。提出了对构建UAV网状网络的当前技术的讨论。然后,我们分析机器人通信中间件,ROS和ROS2的结构,界面和性能。根据我们的审查,提出了通信系统中每层候选解决方案的特征和依赖性。
translated by 谷歌翻译
在多机器人系统中,任务对单个机器人的适当分配是非常重要的组成部分。集中式基础架构的可用性可以保证任务的最佳分配。但是,在许多重要的情况下,例如搜索和救援,探索,灾难管理,战场等,以分散的方式将动态任务直接分配给机器人。机器人之间的有效交流在任何这样的分散环境中都起着至关重要的作用。现有的关于分布式多机器人任务分配(MRTA)的作品假设网络可用或使用幼稚的通信范例。相反,在大多数情况下,网络基础架构是不稳定的或不可用的,并且临时网络是唯一的度假胜地。在同步传输(ST)的无线通信协议(ST)的最新发展显示,比在临时网络(例如无线传感器网络(WSN)/物联网(IOT)应用程序中的传统异步传输协议(IOT)应用程序中比传统的基于异步传输的协议更有效。当前的工作是将ST用于MRTA的第一项工作。具体而言,我们提出了一种有效调整基于ST的多对多交互的算法,并将信息交换最小化以达成任务分配的共识。我们通过广泛的基于基于模拟的研究在不同的环境下进行了基于模拟的延迟和能源效率来展示拟议算法的功效。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
数字化和远程连接扩大了攻击面,使网络系统更脆弱。由于攻击者变得越来越复杂和资源丰富,仅仅依赖传统网络保护,如入侵检测,防火墙和加密,不足以保护网络系统。网络弹性提供了一种新的安全范式,可以使用弹性机制来补充保护不足。一种网络弹性机制(CRM)适应了已知的或零日威胁和实际威胁和不确定性,并对他们进行战略性地响应,以便在成功攻击时保持网络系统的关键功能。反馈架构在启用CRM的在线感应,推理和致动过程中发挥关键作用。强化学习(RL)是一个重要的工具,对网络弹性的反馈架构构成。它允许CRM提供有限或没有事先知识和攻击者的有限攻击的顺序响应。在这项工作中,我们审查了Cyber​​恢复力的RL的文献,并讨论了对三种主要类型的漏洞,即姿势有关,与信息相关的脆弱性的网络恢复力。我们介绍了三个CRM的应用领域:移动目标防御,防守网络欺骗和辅助人类安全技术。 RL算法也有漏洞。我们解释了RL的三个漏洞和目前的攻击模型,其中攻击者针对环境与代理商之间交换的信息:奖励,国家观察和行动命令。我们展示攻击者可以通过最低攻击努力来欺骗RL代理商学习邪恶的政策。最后,我们讨论了RL为基于RL的CRM的网络安全和恢复力和新兴应用的未来挑战。
translated by 谷歌翻译