本文旨在更深入地研究各种可用的模型,包括:InceptionV3,InceptionResnetv2,MobileNetV2和EdgitionNetB7使用转移学习,以对日本动画风格的角色面对面进行分类。本文表明,有效网络-B7的精度率最高,而85.08 \%top-1的精度,其次是MobileNetV2,其准确结果略有较低,但其益处的推理时间较低,所需参数数量较少。本文还使用了一些射击的学习框架,特别是原型网络,该网络可产生不错的结果,可以用作传统转移学习方法的替代方法。
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
无线电星系的连续排放通常可以分为不同的形态学类,如FRI,Frii,弯曲或紧凑。在本文中,我们根据使用深度学习方法使用小规模数据集的深度学习方法来探讨基于形态的无线电星系分类的任务($ \ SIM 2000 $ Samples)。我们基于双网络应用了几次射击学习技术,并使用预先培训的DENSENET模型进行了先进技术的传输学习技术,如循环学习率和歧视性学习迅速训练模型。我们使用最佳表演模型实现了超过92 \%的分类准确性,其中最大的混乱来源是弯曲和周五型星系。我们的结果表明,专注于一个小但策划数据集随着使用最佳实践来训练神经网络可能会导致良好的结果。自动分类技术对于即将到来的下一代无线电望远镜的调查至关重要,这预计将在不久的将来检测数十万个新的无线电星系。
translated by 谷歌翻译
深度学习和转移学习的进步为农业的各种自动化分类任务铺平了道路,包括植物疾病,害虫,杂草和植物物种检测。然而,农业自动化仍然面临各种挑战,例如数据集的大小和缺乏植物域特异性预处理模型。特定于域的预处理模型显示了各种计算机视觉任务的最先进的表现,包括面部识别和医学成像诊断。在本文中,我们提出了Agrinet数据集,该数据集是来自19个地理位置的160k农业图像的集合,几个图像标题为设备,以及423种以上的植物物种和疾病。我们还介绍了Agrinet模型,这是一组预处理的模型:VGG16,VGG19,Inception-V3,InceptionResnet-V2和Xception。 Agrinet-VGG19的分类准确性最高的94%,最高的F1分数为92%。此外,发现所有提出的模型都可以准确地对423种植物物种,疾病,害虫和杂草分类,而Inception-V3模型的精度最低为87%。与ImageNet相比,实验以评估Agrinet模型优势的实验在两个外部数据集上进行了模型:来自孟加拉国的害虫和植物疾病数据集和来自克什米尔的植物疾病数据集。
translated by 谷歌翻译
计算机辅助诊断数字病理学正在变得普遍存在,因为它可以提供更有效和客观的医疗保健诊断。最近的进展表明,卷积神经网络(CNN)架构是一种完善的深度学习范式,可用于设计一种用于乳腺癌检测的计算机辅助诊断(CAD)系统。然而,探索了污染变异性因污染变异性和染色常规化的影响,尚未得到很好的挑战。此外,对于高吞吐量筛选可能是重要的网络模型的性能分析,这也不适用于高吞吐量筛查,也不熟悉。要解决这一挑战,我们考虑了一些当代CNN模型,用于涉及(1)的乳房组织病理学图像的二进制分类。使用基于自适应颜色解卷积(ACD)的颜色归一化算法来处理污染归一化图像的数据以处理染色变量; (2)应用基于转移学习的一些可动性更高效的CNN模型的培训,即视觉几何组网络(VGG16),MobileNet和效率网络。我们在公开的Brankhis数据集上验证了培训的CNN网络,适用于200倍和400x放大的组织病理学图像。实验分析表明,大多数情况下预染额网络在数据增强乳房组织病理学图像中产生更好的质量,而不是污染归一化的情况。此外,我们使用污染标准化图像评估了流行轻量级网络的性能和效率,并发现在测试精度和F1分数方面,高效网络优于VGG16和MOBILENET。我们观察到在测试时间方面的效率比其他网络更好; vgg net,mobilenet,在分类准确性下没有太大降低。
translated by 谷歌翻译
为了使用各种类型的数据理解现实世界,人工智能(AI)是当今最常用的技术。在分析数据中找到模式的同时表示主要任务。这是通过提取代表性特征步骤来执行的,该步骤是使用统计算法或使用某些特定过滤器进行的。但是,从大规模数据中选择有用的功能代表了至关重要的挑战。现在,随着卷积神经网络(CNN)的发展,功能提取操作变得更加自动和更容易。 CNN允许处理大规模的数据,并涵盖特定任务的不同方案。对于计算机视觉任务,卷积网络也用于为深度学习模型的其他部分提取功能。选择合适的网络用于特征提取或DL模型的其他部分不是随机工作。因此,这种模型的实现可能与目标任务以及其计算复杂性有关。已经提出了许多网络,并成为任何AI任务中任何DL模型的著名网络。这些网络被利用用于特征提取或在任何名为骨架的DL模型的开头。骨干是以前在许多其他任务中训练并证明其有效性的已知网络。在本文中,现有骨干的概述,例如详细说明给出了VGG,Resnets,Densenet等。此外,通过对所使用的骨干进行审查,讨论了几个计算机视觉任务。此外,还基于每个任务的骨干,还提供了性能的比较。
translated by 谷歌翻译
Transfer learning is a cornerstone of computer vision, yet little work has been done to evaluate the relationship between architecture and transfer. An implicit hypothesis in modern computer vision research is that models that perform better on ImageNet necessarily perform better on other vision tasks. However, this hypothesis has never been systematically tested. Here, we compare the performance of 16 classification networks on 12 image classification datasets. We find that, when networks are used as fixed feature extractors or fine-tuned, there is a strong correlation between ImageNet accuracy and transfer accuracy (r = 0.99 and 0.96, respectively). In the former setting, we find that this relationship is very sensitive to the way in which networks are trained on ImageNet; many common forms of regularization slightly improve ImageNet accuracy but yield penultimate layer features that are much worse for transfer learning. Additionally, we find that, on two small fine-grained image classification datasets, pretraining on ImageNet provides minimal benefits, indicating the learned features from Ima-geNet do not transfer well to fine-grained tasks. Together, our results show that ImageNet architectures generalize well across datasets, but ImageNet features are less general than previously suggested.
translated by 谷歌翻译
由于肿胀和病态增大,人体组织中组织的异常发育被称为肿瘤。它们主要被归类为良性和恶性。大脑中的肿瘤可能是致命的,因为它可能是癌性的,因此可以以附近的健康细胞为食并不断增加大小。这可能会影响大脑中软组织,神经细胞和小血管。因此,有必要以最高的精度在早期阶段检测和分类。脑肿瘤的大小和位置不同,这使得很难理解其性质。由于附近的健康细胞与肿瘤之间的相似性,即使使用先进的MRI(磁共振成像)技术,脑肿瘤的检测和分类过程也可能是一项繁重的任务。在本文中,我们使用Keras和Tensorflow来实施最先进的卷积神经网络(CNN)架构,例如EdgitionNetB0,Resnet50,Xpection,MobilenetV2和VGG16,使用转移学习来检测和分类三种类型的大脑肿瘤,即神经胶质瘤,脑膜瘤和垂体。我们使用的数据集由3264个2-D磁共振图像和4个类组成。由于数据集的尺寸较小,因此使用各种数据增强技术来增加数据集的大小。我们提出的方法不仅包括数据增强,而且还包括各种图像降级技术,头骨剥离,裁剪和偏置校正。在我们提出的工作效率NETB0体系结构中,最佳准确性为97.61%。本文的目的是区分正常和异常像素,并以更好的准确性对它们进行分类。
translated by 谷歌翻译
与RGB图像相比,高光谱图像包含更多数量的通道,因此包含有关图像中实体的更多信息。卷积神经网络(CNN)和多层感知器(MLP)已被证明是一种有效的图像分类方法。但是,他们遭受了长期培训时间和大量标记数据的要求,以达到预期的结果。在处理高光谱图像时,这些问题变得更加复杂。为了减少训练时间并减少对大型标记数据集的依赖性,我们建议使用转移学习方法。使用PCA将高光谱数据集预处理到较低的维度,然后将深度学习模型应用于分类。然后,转移学习模型使用该模型学到的功能来解决看不见的数据集上的新分类问题。进行了CNN和多个MLP体系结构模型的详细比较,以确定最适合目标的最佳体系结构。结果表明,层的缩放并不总是会导致准确性的提高,但通常会导致过度拟合,并增加训练时间。通过应用转移学习方法而不仅仅是解决问题,训练时间更大程度地减少了。通过直接在大型数据集上训练新模型,而不会影响准确性。
translated by 谷歌翻译
We present an interpretation of Inception modules in convolutional neural networks as being an intermediate step in-between regular convolution and the depthwise separable convolution operation (a depthwise convolution followed by a pointwise convolution). In this light, a depthwise separable convolution can be understood as an Inception module with a maximally large number of towers. This observation leads us to propose a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions. We show that this architecture, dubbed Xception, slightly outperforms Inception V3 on the ImageNet dataset (which Inception V3 was designed for), and significantly outperforms Inception V3 on a larger image classification dataset comprising 350 million images and 17,000 classes. Since the Xception architecture has the same number of parameters as Inception V3, the performance gains are not due to increased capacity but rather to a more efficient use of model parameters.
translated by 谷歌翻译
具有注释的缺乏大规模的真实数据集使转移学习视频活动的必要性。我们的目标是为少数行动分类开发几次拍摄转移学习的有效方法。我们利用独立培训的本地视觉提示来学习可以从源域传输的表示,该源域只能使用少数示例来从源域传送到不同的目标域。我们使用的视觉提示包括对象 - 对象交互,手掌和地区内的动作,这些地区是手工位置的函数。我们采用了一个基于元学习的框架,以提取部署的视觉提示的独特和域不变组件。这使得能够在使用不同的场景和动作配置捕获的公共数据集中传输动作分类模型。我们呈现了我们转让学习方法的比较结果,并报告了阶级阶级和数据间数据间际传输的最先进的行动分类方法。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
Transfer of pre-trained representations improves sample efficiency and simplifies hyperparameter tuning when training deep neural networks for vision. We revisit the paradigm of pre-training on large supervised datasets and fine-tuning the model on a target task. We scale up pre-training, and propose a simple recipe that we call Big Transfer (BiT). By combining a few carefully selected components, and transferring using a simple heuristic, we achieve strong performance on over 20 datasets. BiT performs well across a surprisingly wide range of data regimes -from 1 example per class to 1 M total examples. BiT achieves 87.5% top-1 accuracy on ILSVRC-2012, 99.4% on CIFAR-10, and 76.3% on the 19 task Visual Task Adaptation Benchmark (VTAB). On small datasets, BiT attains 76.8% on ILSVRC-2012 with 10 examples per class, and 97.0% on CIFAR-10 with 10 examples per class. We conduct detailed analysis of the main components that lead to high transfer performance.
translated by 谷歌翻译
在这项工作中,我们介绍了一种方法,并提出了一种改进的神经工作,以执行产品重新识别,这是全自动产品缺陷检测系统的必要核心功能。我们的方法基于特征距离。它是特征提取神经网络的组合,如vgg16,alexnet,带图像搜索引擎 - vearch。我们用于开发产品重新识别系统的数据集是一个水瓶数据集,由400种液体瓶装组成。这是一个小型数据集,这是我们工作的最大挑战。然而,与vearch的神经网络的组合显示了解决产品重新识别问题的可能性。特别是,我们的新神经网络 - 基于AlexNet改进的神经网络的AlphaalexNet可以通过四个百分点提高生产识别准确性。这表明当可以引入和重新设计的高效特征提取方法时,可以实现理想的生产识别精度,以用于几乎相同产品的图像特征提取。为了解决由数据集的小尺寸造成的最大挑战以及识别彼此几乎没有差异的产品的困难性质。在我们未来的工作中,我们提出了一种新的路线图来解决几乎 - 相同的生产标识:介绍或开发需要很少的图像以训练自己的新算法。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
从汽车和交通检测到自动驾驶汽车系统,可以将街道对象的对象检测应用于各种用例。因此,找到最佳的对象检测算法对于有效应用它至关重要。已经发布了许多对象检测算法,许多对象检测算法比较了对象检测算法,但是很少有人比较了最新的算法,例如Yolov5,主要是侧重于街道级对象。本文比较了各种单阶段探测器算法; SSD MobilenetV2 FPN-Lite 320x320,Yolov3,Yolov4,Yolov5L和Yolov5S在实时图像中用于街道级对象检测。该实验利用了带有3,169张图像的修改后的自动驾驶汽车数据集。数据集分为火车,验证和测试;然后,使用重新处理,色相转移和噪音对其进行预处理和增强。然后对每种算法进行训练和评估。基于实验,算法根据推论时间及其精度,召回,F1得分和平均平均精度(MAP)产生了不错的结果。结果还表明,Yolov5L的映射@.5 of 0.593,MobileNetV2 FPN-Lite的推理时间最快,而其他推理时间仅为3.20ms。还发现Yolov5s是最有效的,其具有Yolov5L精度和速度几乎与MobilenetV2 FPN-Lite一样快。这表明各种算法适用于街道级对象检测,并且足够可行,可以用于自动驾驶汽车。
translated by 谷歌翻译
通过卫星摄像机获取关于地球表面的大面积的信息使我们能够看到远远超过我们在地面上看到的更多。这有助于我们在检测和监测土地使用模式,大气条件,森林覆盖和许多非上市方面的地区的物理特征。所获得的图像不仅跟踪连续的自然现象,而且对解决严重森林砍伐的全球挑战也至关重要。其中亚马逊盆地每年占最大份额。适当的数据分析将有助于利用可持续健康的氛围来限制对生态系统和生物多样性的不利影响。本报告旨在通过不同的机器学习和优越的深度学习模型用大气和各种陆地覆盖或土地使用亚马逊雨林的卫星图像芯片。评估是基于F2度量完成的,而用于损耗函数,我们都有S形跨熵以及Softmax交叉熵。在使用预先训练的ImageNet架构中仅提取功能之后,图像被间接馈送到机器学习分类器。鉴于深度学习模型,通过传输学习使用微调Imagenet预训练模型的集合。到目前为止,我们的最佳分数与F2度量为0.927。
translated by 谷歌翻译
We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is designed to simulate the few-shot setting. Once trained, a RN is able to classify images of new classes by computing relation scores between query images and the few examples of each new class without further updating the network. Besides providing improved performance on few-shot learning, our framework is easily extended to zero-shot learning. Extensive experiments on five benchmarks demonstrate that our simple approach provides a unified and effective approach for both of these two tasks.
translated by 谷歌翻译
来自静态图像的面部表情识别是计算机视觉应用中的一个具有挑战性的问题。卷积神经网络(CNN),用于各种计算机视觉任务的最先进的方法,在预测具有极端姿势,照明和闭塞条件的面部的表达式中已经有限。为了缓解这个问题,CNN通常伴随着传输,多任务或集合学习等技术,这些技术通常以增加的计算复杂性的成本提供高精度。在这项工作中,我们提出了一种基于零件的集合转移学习网络,其模型通过将面部特征的空间方向模式与特定表达相关来模拟人类如何识别面部表达。它由5个子网络组成,每个子网络从面部地标的五个子集中执行转移学习:眉毛,眼睛,鼻子,嘴巴或颌骨表达分类。我们表明我们所提出的集合网络使用从面部肌肉的电机运动发出的视觉模式来预测表达,并展示从面部地标定位转移到面部表情识别的实用性。我们在CK +,Jaffe和SFew数据集上测试所提出的网络,并且它分别优于CK +和Jaffe数据集的基准,分别为0.51%和5.34%。此外,所提出的集合网络仅包括1.65M的型号参数,确保在培训和实时部署期间的计算效率。我们所提出的集合的Grad-Cam可视化突出了其子网的互补性质,是有效集合网络的关键设计参数。最后,交叉数据集评估结果表明,我们建议的集合具有高泛化能力,使其适合现实世界使用。
translated by 谷歌翻译
Automatic Arabic handwritten recognition is one of the recently studied problems in the field of Machine Learning. Unlike Latin languages, Arabic is a Semitic language that forms a harder challenge, especially with variability of patterns caused by factors such as writer age. Most of the studies focused on adults, with only one recent study on children. Moreover, much of the recent Machine Learning methods focused on using Convolutional Neural Networks, a powerful class of neural networks that can extract complex features from images. In this paper we propose a convolutional neural network (CNN) model that recognizes children handwriting with an accuracy of 91% on the Hijja dataset, a recent dataset built by collecting images of the Arabic characters written by children, and 97% on Arabic Handwritten Character Dataset. The results showed a good improvement over the proposed model from the Hijja dataset authors, yet it reveals a bigger challenge to solve for children Arabic handwritten character recognition. Moreover, we proposed a new approach using multi models instead of single model based on the number of strokes in a character, and merged Hijja with AHCD which reached an averaged prediction accuracy of 96%.
translated by 谷歌翻译