儿童性滥用和剥削(CSAE)受害者的确切年龄估计是最重要的数字取证挑战之一。调查人员通常需要通过查看图像和解释性发展阶段和其他人类特征来确定受害者的年龄。主要优先事项 - 保障儿童 - 通常受到这项工作可能需要的巨大的法医反积云,认知偏见和巨大的心理压力的负面影响。本文评估了现有的面部图像数据集,并提出了一种针对类似数字法医研究贡献的需求而定制的新数据集。这个小型,不同的DataSet为0到20岁的个人包含245个图像,并与FG-Net DataSet的82个唯一图像合并,从而实现了具有高图像分集和低年龄范围密度的327个图像。在IMDB-Wiki DataSet上预先培训的深度期望(DEX)算法测试新数据集。 16至20岁的年轻青少年和年龄较大的青少年/成年人的整体成果非常令人鼓舞 - 达到1.79年的MAE,但也表明0至10岁儿童的准确性需要进一步的工作。为了确定原型的功效,已经考虑了四个数字法医专家的有价值输入,以提高年龄估计结果。需要进一步的研究来扩展关于图像密度的数据集和性别和种族分集等因素的平等分布。
translated by 谷歌翻译
The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals. Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications. These developments also triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication schemes, on the other. Especially important here, are computer vision techniques that focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions introduced by the mandates for facial masks. Such computer vision based human analysis techniques include face and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression estimation procedures, models for detecting face-hand interactions and many others, and have seen considerable attention over recent years. The goal of this survey is to provide an introduction to the problems induced by COVID-19 into such research and to present a comprehensive review of the work done in the computer vision based human analysis field. Particular attention is paid to the impact of facial masks on the performance of various methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets useful for the development and evaluation of methods for COVID-19 related applications is also provided. Finally, to help advance the field further, a discussion on the main open challenges and future research direction is given.
translated by 谷歌翻译
由于隐私,透明度,问责制和缺少程序保障的担忧,印度的面部加工系统的增加越来越多。与此同时,我们也很少了解这些技术如何在印度13.4亿种群的不同特征,特征和肤色上表现出来。在本文中,我们在印度脸部的数据集中测试四个商用面部加工工具的面部检测和面部分析功能。该工具在面部检测和性别和年龄分类功能中显示不同的错误率。与男性相比,印度女性面的性别分类错误率始终如一,最高的女性错误率为14.68%。在某些情况下,这种错误率远高于其他国籍的女性之前的研究表明。年龄分类错误也很高。尽管从一个人的实际年龄从一个人的实际年龄到10年来考虑到可接受的误差率,但年龄预测失败的速度为14.3%至42.2%。这些发现指向面部加工工具的准确性有限,特别是某些人口组,在采用此类系统之前需要更关键的思维。
translated by 谷歌翻译
深度神经网络在人类分析中已经普遍存在,增强了应用的性能,例如生物识别识别,动作识别以及人重新识别。但是,此类网络的性能通过可用的培训数据缩放。在人类分析中,对大规模数据集的需求构成了严重的挑战,因为数据收集乏味,廉价,昂贵,并且必须遵守数据保护法。当前的研究研究了\ textit {合成数据}的生成,作为在现场收集真实数据的有效且具有隐私性的替代方案。这项调查介绍了基本定义和方法,在生成和采用合成数据进行人类分析时必不可少。我们进行了一项调查,总结了当前的最新方法以及使用合成数据的主要好处。我们还提供了公开可用的合成数据集和生成模型的概述。最后,我们讨论了该领域的局限性以及开放研究问题。这项调查旨在为人类分析领域的研究人员和从业人员提供。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
很少有研究重点是研究人们如何识别变形攻击,即使有一些出版物已经检查了自动化FRS的敏感性并提供了变形攻击检测(MAD)方法。 MAD接近他们的决策要么基于单个图像,因此没有参考以比较(S-MAD)或使用参考图像(D-MAD)。一个普遍的误解是,审查员或观察者的面部变体检测能力取决于他们的主题专业知识,经验和对这个问题的熟悉程度,并且没有任何作品报告了定期验证身份(ID)文档的观察者的具体结果。当人类观察者参与检查具有面部图像的ID文件时,其能力的失误可能会面临重大的社会挑战。为了评估观察者的熟练程度,这项工作首先构建了来自48位不同受试者的现实变形攻击的新基准数据库,从而产生了400个变形图像。我们还捕获了从自动边界控制(ABC)门的图像,以模仿D-MAD设置中现实的边界横断场景,并使用400个探针图像研究人类观察者检测变形图像的能力。还生产了一个新的180个变形图像的数据集,以研究S-MAD环境中的人类能力。除了创建一个新的评估平台来进行S-MAD和D-MAD分析外,该研究还雇用了469位D-MAD的观察员,S-MAD的410位观察员和410位观察员,他们主要是来自40多个国家 /地区的政府雇员,以及103个科目谁不是考官。该分析提供了有趣的见解,并突出了缺乏专业知识和未能认识到专家大量变形攻击的缺乏。这项研究的结果旨在帮助制定培训计划,以防止安全失败,同时确定图像是真正的还是改变了图像。
translated by 谷歌翻译
在过去的几十年里,机器和深度学习界在挑战性的任务中庆祝了巨大成就,如图像分类。人工神经网络的深度建筑与可用数据的宽度一起使得可以描述高度复杂的关系。然而,仍然不可能完全捕捉深度学习模型已经了解到的深度学习模型并验证它公平,而不会产生偏见,特别是在临界任务中,例如在医学领域产生的问题。这样的任务的一个示例是检测面部图像中的不同面部表情,称为动作单位。考虑到这项特定任务,我们的研究旨在为偏见提供透明度,具体与性别和肤色有关。我们训练一个神经网络进行动作单位分类,并根据其准确性和基于热量的定性分析其性能。对我们的结果的结构化审查表明我们能够检测到偏见。尽管我们不能从我们的结果得出结论,但较低的分类表现完全来自性别和肤色偏差,这些偏差必须得到解决,这就是为什么我们通过提出关于如何避免检测到的偏差的建议。
translated by 谷歌翻译
基于全面的生物识别是一个广泛的研究区域。然而,仅使用部分可见的面,例如在遮盖的人的情况下,是一个具有挑战性的任务。在这项工作中使用深卷积神经网络(CNN)来提取来自遮盖者面部图像的特征。我们发现,第六和第七完全连接的层,FC6和FC7分别在VGG19网络的结构中提供了鲁棒特征,其中这两层包含4096个功能。这项工作的主要目标是测试基于深度学习的自动化计算机系统的能力,不仅要识别人,还要对眼睛微笑等性别,年龄和面部表达的认可。我们的实验结果表明,我们为所有任务获得了高精度。最佳记录的准确度值高达99.95%,用于识别人员,99.9%,年龄识别的99.9%,面部表情(眼睛微笑)认可为80.9%。
translated by 谷歌翻译
计算机视觉(CV)取得了显着的结果,在几个任务中表现优于人类。尽管如此,如果不正确处理,可能会导致重大歧视,因为CV系统高度依赖于他们所用的数据,并且可以在此类数据中学习和扩大偏见。因此,理解和发现偏见的问题至关重要。但是,没有关于视觉数据集中偏见的全面调查。因此,这项工作的目的是:i)描述可能在视觉数据集中表现出来的偏差; ii)回顾有关视觉数据集中偏置发现和量化方法的文献; iii)讨论现有的尝试收集偏见视觉数据集的尝试。我们研究的一个关键结论是,视觉数据集中发现和量化的问题仍然是开放的,并且在方法和可以解决的偏见范围方面都有改进的余地。此外,没有无偏见的数据集之类的东西,因此科学家和从业者必须意识到其数据集中的偏见并使它们明确。为此,我们提出了一个清单,以在Visual DataSet收集过程中发现不同类型的偏差。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
近年来,已经开发了各种估计生物年龄(BA)的方法。尤其是随着机器学习(ML)的发展,BA的预测有越来越多的类型,并且准确性得到了极大的提高。估计BA的模型在监测健康衰老方面起着重要作用,并可以提供新的工具来检测普通人群的健康状况并向较不健康的人发出警告。我们将主要使用ML回顾三种年龄预测方法。它们基于血液生物标志物,面部图像和结构神经影像学特征。目前,使用血液生物标志物的模型是最简单,最直接,最准确的方法。面部图像方法受种族,环境等各个方面的影响,预测准确性不是很好,这不能为医疗领域做出巨大贡献。总而言之,我们在这里为我们和其他潜在的一般人群的大数据时代跟踪前进的方向,并展示了利用当今可用的大量数据的方式。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
The study proposes and tests a technique for automated emotion recognition through mouth detection via Convolutional Neural Networks (CNN), meant to be applied for supporting people with health disorders with communication skills issues (e.g. muscle wasting, stroke, autism, or, more simply, pain) in order to recognize emotions and generate real-time feedback, or data feeding supporting systems. The software system starts the computation identifying if a face is present on the acquired image, then it looks for the mouth location and extracts the corresponding features. Both tasks are carried out using Haar Feature-based Classifiers, which guarantee fast execution and promising performance. If our previous works focused on visual micro-expressions for personalized training on a single user, this strategy aims to train the system also on generalized faces data sets.
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
随着数据驱动的系统越来越大规模部署,对历史上边缘化的群体的不公平和歧视结果引起了道德问题,这些群体在培训数据中的代表性不足。作为回应,围绕AI的公平和包容性的工作呼吁代表各个人口组的数据集。在本文中,我们对可访问性数据集中的年龄,性别和种族和种族的代表性进行了分析 - 数据集 - 来自拥有的数据集,这些数据集来自拥有的人。残疾和老年人 - 这可能在减轻包含AI注入的应用程序的偏见方面发挥重要作用。我们通过审查190个数据集的公开信息来检查由残疾人来源的数据集中的当前表示状态,我们称这些可访问性数据集为止。我们发现可访问性数据集代表不同的年龄,但具有性别和种族表示差距。此外,我们研究了人口统计学变量的敏感和复杂性质如何使分类变得困难和不一致(例如,性别,种族和种族),标记的来源通常未知。通过反思当前代表残疾数据贡献者的挑战和机会,我们希望我们的努力扩大了更多可能将边缘化社区纳入AI注入系统的可能性。
translated by 谷歌翻译
动物运动跟踪和姿势识别的进步一直是动物行为研究的游戏规则改变者。最近,越来越多的作品比跟踪“更深”,并解决了对动物内部状态(例如情绪和痛苦)的自动认识,目的是改善动物福利,这使得这是对该领域进行系统化的及时时刻。本文对基于计算机的识别情感状态和动物的疼痛的研究进行了全面调查,并涉及面部行为和身体行为分析。我们总结了迄今为止在这个主题中所付出的努力 - 对它们进行分类,从不同的维度进行分类,突出挑战和研究差距,并提供最佳实践建议,以推进该领域以及一些未来的研究方向。
translated by 谷歌翻译
在自拍照上的增强现实或AR过滤器在社交媒体平台上已经非常受欢迎,用于各种应用程序,包括营销,娱乐和美学。鉴于AR面部过滤器的广泛采用以及面孔在我们的社会结构和关系中的重要性,科学界从心理,艺术和社会学的角度分析此类过滤器的影响增加了。但是,该领域的定量分析很少,这主要是由于缺乏具有应用AR过滤器的面部图像的公开数据集。大多数社交媒体平台的专有性,紧密的性质不允许用户,科学家和从业人员访问代码和可用AR面孔过滤器的详细信息。从这些平台上刮擦面孔以收集数据在道德上是不可接受的,因此应在研究中避免。在本文中,我们介绍了OpenFilter,这是一个灵活的框架,可在社交媒体平台上使用AR过滤器,可在现有的大量人体面孔上使用。此外,我们共享FairBeauty和B-LFW,这是公开可用的Fairface和LFW数据集的两个美化版本,我们概述了这些美化数据集的分析得出的见解。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译