软件工程(ML4SE)的机器学习是一个积极发展的研究领域,专注于帮助程序员工作的方法。为了在实践中应用开发的方法,他们需要实现合理的质量,以帮助而不是分散开发人员的注意力。尽管开发新方法来代码表示和数据收集可以提高模型的整体质量,但它没有考虑到我们可以从手头项目中获得的信息。在这项工作中,我们研究了如果我们针对特定项目,则如何提高模型的质量。我们开发一个框架来评估质量改进,模型可以在特定项目上的方法名称预测任务进行微调后获得。我们评估了三种不同复杂性的模型,并在三个设置中进行了比较它们的质量:在大型Java项目的大型数据集上进行培训,进一步对特定项目的数据进行了微调,并从头开始训练了此数据。我们表明,每项项目的微调可以极大地提高模型的质量,因为它们捕获了项目的领域和命名约定。我们开放用于数据收集的工具以及运行实验的代码:https://zenodo.org/record/6040745。
translated by 谷歌翻译
随着研究人员和从业人员将机器学习应用于越来越多的软件工程问题,他们使用的方法变得更加复杂。许多现代方法都以抽象语法树(AST)或其扩展形式使用内部代码结构:基于路径的表示,复杂的图将AST与其他边缘结合在一起。即使可以使用不同的解析器来从代码中提取AST的过程,但选择解析器对最终模型质量的影响仍然没有研究。此外,研究人员经常省略提取特定代码表示的确切细节。在这项工作中,我们在方法名称预测任务中评估了两个模型,即Code2Seq和Treelstm,由八个不同的解析器用于Java语言。为了将数据制备的过程与不同的解析器统一,我们开发了SuperParser,这是基于Pathminer的多语言解析器 - 不合Snostic库。 SuperParser促进了适用于培训和评估ML模型的数据集的端到端创建,这些模型与源代码中的结构信息合作。我们的结果表明,不同解析器建造的树木的结构和内容各不相同。然后,我们分析这种多样性如何影响模型的质量,并表明两种模型最不合适的解析器之间的质量差距非常重要。最后,我们讨论了解析器的其他功能,研究人员和从业人员在选择解析器时应考虑这些特征,以及对模型质量的影响。 SuperParser代码可在https://doi.org/10.5281/zenodo.6366591上公开获得。我们还发布了Java-Norm,即我们用于评估模型的数据集:https://doi.org/10.5281/zenodo.6366599。
translated by 谷歌翻译
Machine Learning for Source Code (ML4Code) is an active research field in which extensive experimentation is needed to discover how to best use source code's richly structured information. With this in mind, we introduce JEMMA, an Extensible Java Dataset for ML4Code Applications, which is a large-scale, diverse, and high-quality dataset targeted at ML4Code. Our goal with JEMMA is to lower the barrier to entry in ML4Code by providing the building blocks to experiment with source code models and tasks. JEMMA comes with a considerable amount of pre-processed information such as metadata, representations (e.g., code tokens, ASTs, graphs), and several properties (e.g., metrics, static analysis results) for 50,000 Java projects from the 50KC dataset, with over 1.2 million classes and over 8 million methods. JEMMA is also extensible allowing users to add new properties and representations to the dataset, and evaluate tasks on them. Thus, JEMMA becomes a workbench that researchers can use to experiment with novel representations and tasks operating on source code. To demonstrate the utility of the dataset, we also report results from two empirical studies on our data, ultimately showing that significant work lies ahead in the design of context-aware source code models that can reason over a broader network of source code entities in a software project, the very task that JEMMA is designed to help with.
translated by 谷歌翻译
代码克隆是实现类似功能的代码段对。克隆检测是自动源代码理解的基本分支,在重构建议,窃检测和代码摘要中具有许多应用程序。克隆检测的一个特别有趣的案例是检测语义克隆,即具有相同功能但实现方面有显着差异的代码段。检测语义克隆的一种有希望的方法是对比度学习(CL),这是一种在计算机视觉中流行的机器学习范式,但尚未用于代码处理。我们的工作旨在评估最受欢迎的CL算法以及两个任务上的三个源代码表示形式。第一个任务是代码克隆检测,我们在包含104个算法的实现的POJ-104数据集上进行了评估。第二个任务是窃检测。为了评估此任务上的模型,我们介绍了CodeTransFormator,这是用于转换源代码的工具。我们使用它来创建一个基于竞争性编程解决方案模仿窃代码的数据集。我们为这两项任务培训了九个模型,并将其与现有的六种方法进行了比较,包括传统工具和现代培训的神经模型。我们评估的结果表明,提议的模型在每个任务中都具有多样性,但是基于图的模型的性能通常高于其他模型。在CL算法中,SIMCLR和SWAV带来更好的结果,而MoCo是最强大的方法。我们的代码和训练有素的模型可在https://doi.org/10.5281/zenodo.6360627,https://doi.org/10.5281/zenodo.5596345获得。
translated by 谷歌翻译
训练有素的机器学习模型,利用大量的开源软件数据,现在已经成为自动化许多软件工程任务的有趣方法。几个硒任务都受到这种方法,在过去的几年里,性能逐渐改善,具有更好的模型和培训方法。更多,更多样化,清洁,标记数据更好的培训;但构建高质量的数据集是耗时和挑战。增强清洁量和多样性的方法,标记数据通常具有广泛的适用性。对于某些语言(例如,Ruby)标记的数据不那么丰富;在其他(例如,JavaScript)中,可用数据可能更多地关注某些应用域,从而更加多样化。作为围绕此类数据瓶颈,我们提出了证据表明,不同语言(执行相同功能)的人写代码相当相似,特别是保留标识符命名模式;我们进一步提出了证据表明标识符是软件工程任务培训数据的一个非常重要的要素。我们利用这种相当偶然的现象来查找可用的多语言训练数据(跨不同语言)的证据可用于放大性能。我们研究这一点3个不同的任务:代码摘要,代码检索和功能命名。我们注意到,这种数据增强方法与不同的任务,语言和机器学习模型广泛兼容。
translated by 谷歌翻译
深学习方法,已经在诸如图像分类和自然语言处理领域中的成功应用,最近被应用到源代码分析过,由于免费提供源代码(例如,从开源软件库)的巨大数额。在这项工作中,我们阐述在国家的最先进的方法来使用有关其句法结构信息的源代码表示,我们适应它代表源的变化(即,提交)。我们使用这种表示安全相关的分类提交。因为我们的方法是使用迁移学习(也就是我们训练的一个“借口任务”是可用的丰富的标签数据的网络,然后我们使用这样的网络提交分类的目标任务,为此,少标记实例可用)我们研究了前培训使用两种不同的借口任务与随机初始化模型的网络的影响。我们的研究结果表明,通过利用代码语法跑赢基于令牌的表示得到的结构信息表示。此外,具有非常大的数据集上的松散的相关任务借口训练前时所获得的性能度量($> 10 ^ 6个$样品)上的更小的数据集训练前当超过($> 10 ^ 4 $样品)但对于一个借口任务更密切相关的目标任务。
translated by 谷歌翻译
近年来,研究人员创建并引入了大量各种代码生成模型。由于对每个新模型版本的人类评估都是不可行的,因此社区采用了自动评估指标,例如BLEU来近似人类判断的结果。这些指标源自机器翻译域,目前尚不清楚它们是否适用于代码生成任务,以及他们与人类对此任务的评估有多一致。还有两个指标,即Codebleu和Ruby,它们是为了估计代码的相似性并考虑了代码属性的。但是,对于这些指标,几乎没有关于他们与人类评估一致的研究。尽管如此,公制得分的最小差异仍用于声称某些代码生成模型的优越性。在本文中,我们介绍了一项有关六个指标的适用性的研究-Bleu,Rouge-L,Meteor,Chrf,Codebleu,Ruby-用于评估代码生成模型。我们对两个不同的代码生成数据集进行了一项研究,并使用人类注释来评估这些数据集上运行的所有模型的质量。结果表明,对于Python单线的Conala数据集,如果模型得分的差异小于5分,则没有一个指标可以正确模拟人类判断,而$ 95 \%$确定性,则使用$> 95 \%$确定性。对于由特定结构类别组成的炉石传说数据集,至少2分的模型得分差异足以声称一种模型比另一个模型的优越性。使用我们的发现,我们得出了有关使用指标来估计代码生成任务的模型性能的几项建议。
translated by 谷歌翻译
在本文中,我们解决了深入学习的软件漏洞自动修复问题。数据驱动漏洞修复的主要问题是已知确认漏洞的少数现有数据集仅由几千例组成。然而,培训深度学习模型通常需要数十万例的例子。在这项工作中,我们利用了错误修复任务和漏洞修复任务的直觉相关,并且可以传输来自错误修复的知识可以传输到修复漏洞。在机器学习界中,这种技术称为转移学习。在本文中,我们提出了一种修复名为Vreepair的安全漏洞的方法,该方法是基于转移学习。 vreepair首先在大型错误修复语料库上培训,然后在漏洞修复数据集上调整,这是一个较小的数量级。在我们的实验中,我们表明,仅在错误修复语料库上培训的模型可能已经修复了一些漏洞。然后,我们证明转移学习改善了修复易受攻击的C功能的能力。我们还表明,转移学习模型比具有去噪任务训练的模型更好,并在漏洞固定任务上进行微调。总而言之,本文表明,与在小型数据集上的学习相比,转移学习适用于修复C中的安全漏洞。
translated by 谷歌翻译
Automated Program Repair (APR) is defined as the process of fixing a bug/defect in the source code, by an automated tool. APR tools have recently experienced promising results by leveraging state-of-the-art Neural Language Processing (NLP) techniques. APR tools such as TFix and CodeXGLUE combine text-to-text transformers with software-specific techniques are outperforming alternatives, these days. However, in most APR studies the train and test sets are chosen from the same set of projects. In reality, however, APR models are meant to be generalizable to new and different projects. Therefore, there is a potential threat that reported APR models with high effectiveness perform poorly when the characteristics of the new project or its bugs are different than the training set's(Domain Shift). In this study, we first define and measure the domain shift problem in automated program repair. Then, we then propose a domain adaptation framework that can adapt an APR model for a given target project. We conduct an empirical study with three domain adaptation methods FullFineTuning, TuningWithLightWeightAdapterLayers, and CurriculumLearning using two state-of-the-art domain adaptation tools (TFix and CodeXGLUE) and two APR models on 611 bugs from 19 projects. The results show that our proposed framework can improve the effectiveness of TFix by 13.05% and CodeXGLUE by 23.4%. Another contribution of this study is the proposal of a data synthesis method to address the lack of labelled data in APR. We leverage transformers to create a bug generator model. We use the generated synthetic data to domain adapt TFix and CodeXGLUE on the projects with no data (Zero-shot learning), which results in an average improvement of 5.76% and 24.42% for TFix and CodeXGLUE, respectively.
translated by 谷歌翻译
在这项工作中,我们提出了一种从IDE中从用户那里收集完成使用日志的方法,并使用它们来训练基于机器学习的模型来排名完成​​候选。我们开发了一组描述候选人及其上下文的功能,并在基于Intellij的IDE的早期访问程序中部署了其匿名集合。我们使用日志从用户那里收集代码完成数据集,并使用它来训练排名catboost模型。然后,我们在两种设置中对其进行了评估:在收集到的完成的一组持有的集合中,并在IDE中的两个不同组的用户对单独的A/B测试中进行了评估。我们的评估表明,使用对过去用户行为日志训练的简单排名模型可显着改善代码完成体验。与默认的基于启发式的排名相比,我们的模型表明,在2.073中执行IDE完成所需的打字操作数量减少到1.832。该方法遵守隐私要求和法律约束,因为它不需要收集个人信息,在客户方面执行所有必要的匿名化。重要的是,它可以连续改进:实施新功能,收集新数据并评估新模型 - 这样,我们自2020年底以来就一直在生产中使用它。
translated by 谷歌翻译
捕获和归因于代码变更引起的生产中的性能回归很难;事先预测它们,甚至更努力。关于自动学习预测软件中性能回归的入门,本文介绍了我们在Meta研究和部署基于ML的回归预测管道时获得的经验。在本文中,我们报告了一项比较研究,其复杂性增加了四个ML模型,从(1)代码 - opaque,(2)单词袋,(3)基于转换的变压器到(4)基于定制变压器的模型,创造的超大通信器。我们的调查表明,性能预测问题的固有难度,其特征是良性对回归变化的不平衡。我们的结果还质疑了基于变压器的架构在性能预测中的一般适用性:基于基础的代码伯特方法的性能令人惊讶。我们高度定制的超大号架构最初实现了预测性能,这与简单的单词模型相当,并且仅在下游用例中优于它们。超级人员将其转移到应用程序的这种能力很少有学习示例提供了在Meta实践中部署它的机会:它可以作为预滤波器来解决不太可能引入回归的更改,从而缩小更改空间的变化空间搜索回归高达43%,比随机基线提高45倍。为了进一步洞悉超大号公园,我们通过一系列计算反事实解释进行了探索。这些突出显示了代码的哪些部分更改模型认为重要的,从而验证了学习的黑框模型。
translated by 谷歌翻译
大型变压器模型实现了自然语言理解任务的最新状态,并越来越成为建模源代码的基线模型体系结构。通常,变压器在大型无监督的语料库中进行预训练,学习令牌表示和与通常可用的文本相关的转换,然后对特定的下游感兴趣的任务进行微调。虽然微调是一种尝试将模型调整为新领域的久经考验的方法(例如,在给定主题上提出问题,概括仍然是一个持续的挑战。在本文中,我们探索并评估了变形金刚的模型以进行个性化。在为Java方法生成单元测试的背景下,我们评估学习以使用多种个性化技术为特定的软件项目个性化。我们考虑三种关键方法:(i)自定义微调,这允许调整所有模型参数; (ii)轻巧的微调,它冻结了大多数模型的参数,可以单独调整令牌嵌入和SoftMax层或单独的最终层; (iii)前缀调整,该调谐使模型参数冻结,但优化了小型项目特定的前缀矢量。这些技术中的每一个都提供了总计算成本和预测性能的权衡,我们通过代码和特定任务指标,培训时间和总计算操作进行评估。我们比较了这些微调策略以生成代码,并讨论了各种部署方案中每个策略的潜在概括和成本益处。
translated by 谷歌翻译
源代码的预训练的生成语言模型(例如PLBART,CODET5,SPT-CODE)在过去几年中对多个任务(包括代码生成和翻译)产生了强劲的结果。这些模型采用了不同的训练前目标,以自我监督的方式从非常大规模的语料库中学习代码构建的统计数据。预训练模型的成功很大程度上取决于这些预训练的目标。本文提出了一个新的预训练目标,即“归化”源代码,利用代码的双峰,双通道(正式和自然渠道)性质。与自然语言不同,代码的双峰,双通道的性质使我们能够大规模生成语义上等效的代码。我们介绍了六类的语义保存转换,以引入非自然的代码形式,然后强迫我们的模型制作开发人员编写的更自然的原创程序。学习在没有明确的手动监督的情况下,通过大型的开源代码来生成等效但更自然的代码,有助于模型学习摄入和生成代码。我们将模型在三个生成软件工程任务中微调:代码生成,代码翻译和代码改进,具有有限的人类策划标记数据并实现最先进的性能与CODET5。我们表明,我们的预训练模型在零射门和少数学习方面特别有竞争力,并且在学习代码属性(例如语法,数据流)方面更好。
translated by 谷歌翻译
在开源存储库中发现的真正错误修复似乎是学习本地化和修复实际错误的理想来源。但是,缺乏大规模的错误修复集合使过去难以有效利用过去的较大神经模型的真正错误修复。相比之下,人工错误 - 通过突变现有源代码产生的人为错误可以轻松地以足够的规模获得,因此在培训现有方法时通常是首选的。尽管如此,在面对真正的错误时,经过对人造错误的培训的本地化和维修模型通常在表现不佳。这就提出了一个问题,是否在实际错误修复程序上培训的错误本地化和维修模型在本地化和维修实际错误方面更有效。我们通过引入Realit,这是一种预先培训和预先计算方法,以有效地学习从真正的错误修复中进行本地化和修复真实的错误来解决这个问题。 Realit首先是在传统突变操作员产生的大量人造错误上进行的,然后在较小的一组实际错误修复程序上进行了微调。微调不需要对学习算法进行任何修改,因此可以轻松地在各种培训方案中用于错误定位或维修(即使实际培训数据很少)。此外,我们发现,对使用真实错误修复的培训在经验上几乎使现有模型在实际错误上的本地化性能翻了一番,同时维护甚至改善了维修性能。
translated by 谷歌翻译
我们提出了Pangu-Coder,这是一种仅预读的解码器语言模型,该模型采用pangu-alpha架构进行文本到代码生成,即给定自然语言问题描述的编程语言解决方案的合成。我们使用两阶段策略训练Pangu-Coder:第一阶段采用因果语言建模(CLM)来预先培训原始编程语言数据,而第二阶段则使用因果语言建模和掩盖语言建模(MLM)的组合培训目标,专注于文本到代码生成的下游任务,并培训松散的自然语言程序定义和代码功能。最后,我们讨论了pangu-coder-ft,该pander the是通过竞争性编程问题和代码与持续集成测试的结合进行了微调的。我们评估了pangu-coder,重点是它是否生成功能上正确的程序,并证明它在参加较小的上下文窗口和较少的数据培训的同时,它比诸如Codex之类的类似大小的模型(例如Codex)实现等效性或更好的性能。
translated by 谷歌翻译
GitHub是Internet上最大的开源软件主机。这个大型,可自由访问的数据库吸引了从业人员和研究人员的注意。但是,随着Github的增长的继续,越来越难以导航遍布广泛领域的大量存储库。过去的工作表明,考虑到应用程序域对于预测存储库的普及以及有关项目质量的推理的任务至关重要。在这项工作中,我们建立在先前注释的5,000个GitHub存储库的数据集上,以设计自动分类器,以通过其应用程序域对存储库进行分类。分类器使用最先进的自然语言处理技术和机器学习,根据五个应用程序域从多个数据源和目录存储库中学习。我们用(1)自动分类器贡献,该分类器可以将流行的存储库分配给每个应用程序域,至少具有70%的精度,(2)对该方法在不流行的存储库中的性能进行调查,以及(3)这种方法对这种方法的实际应用程序,用于回答软件工程实践的采用如何在应用程序域之间有何不同。我们的工作旨在帮助GitHub社区确定感兴趣的存储库,并为未来的工作开放有希望的途径,以调查来自不同应用领域的存储库之间的差异。
translated by 谷歌翻译
大规模的,预训练的语言模型几乎没有学习的方法是回答有关代码问题的有力方法,例如,如何完成给定的代码示例,甚至从头开始生成代码段。这些模型的成功提出了一个问题,它们是否可以作为构建广泛代码生成工具的基础。传统上,此类工具是为每个任务手动和单独构建的。取而代之的是,只需提供一些示例或对预期工具行为的自然语言描述,就可以从单个预训练的语言模型中获取不同的工具。本文研究了代码的最先进的,预先训练的代码模型,Codex可能会达到此目的。我们考虑通过一系列传统工具针对的三个代码操纵和代码生成任务:(i)代码突变; (ii)从自然语言文档中测试甲骨文的生成; (iii)测试案例生成。对于每个任务,我们将几杆学习与手动构建的工具进行比较。我们的结果表明,基于模型的工具补充(代码突变),在PAR上(测试Oracle生成),甚至超越了其各自的传统构建的工具(测试案例生成),同时施加了开发它们的努力。通过比较基于模型的工具的不同变体的有效性,我们提供了有关如何将适当输入(“提示”)设计到模型以及模型大小的影响的见解。例如,我们发现,提供对代码生成任务的小型自然语言描述是改善预测的一种简单方法。总体而言,我们得出的结论是,很少有语言模型令人惊讶地有效,但是还有更多的工作要做,例如探索更多样化的方式来促使和解决更多有关任务。
translated by 谷歌翻译
在过去的几年中,世界已转向多核和多核共享内存体系结构。结果,通过将共享内存并行化方案引入软件应用程序,越来越需要利用这些体系结构。 OpenMP是实现此类方案的最全面的API,其特征是可读接口。然而,由于平行共享内存的管理中普遍存在的陷阱,将OpenMP引入代码很具有挑战性。为了促进此任务的性能,多年来创建了许多源代码(S2S)编译器,任务是将OpenMP指令自动插入代码。除了对输入格式的鲁棒性有限外,这些编译器仍然无法在定位可行的代码和生成适当指令时获得令人满意的覆盖范围和精确度。在这项工作中,我们建议利用ML技术的最新进展,特别是自然语言处理(NLP),以完全替换S2S编译器。我们创建一个数据库(语料库),专门用于此目标。 Open-Opm包含28,000多个代码片段,其中一半包含OpenMP指令,而另一半根本不需要并行化。我们使用语料库来培训系统来自动对需要并行化的代码段进行分类,并建议单个OpenMP条款。我们为这些任务培训了几个名为Bragformer的变压器模型,并表明它们的表现优于统计训练的基线和自动S2S并行化编译器,这既可以分类OpenMP指令的总体需求,又要介绍私人和还原条款。我们的源代码和数据库可在以下网址获得:https://github.com/scientific-computing-lab-nrcn/pragformer。
translated by 谷歌翻译
改善软件性能是软件开发周期中重要但充满挑战的部分。如今,大多数性能效率低下是由绩效专家确定和修补的。深度学习方法的最新进展和开源数据的广泛可用性为自动化绩效问题的识别和修补提供了一个绝佳的机会。在本文中,我们提出了Deepperf,这是一种基于变压器的方法,以建议针对C#应用程序进行性能改进。我们在英语和源代码语料库上预告了Deepperf,然后进行了Finetuning的任务,以生成C#应用程序的性能改进补丁。我们的评估表明,我们的模型可以在约53%的案例中生成与开发人员修复相同的性能改进建议,在我们专家验证的C#开发人员进行的绩效更改的数据集中,逐字化约34%。此外,我们使用基准测试和单元测试在GitHub上在50个开源C#存储库上评估Deepperf,并发现我们的模型能够提出有效的性能改进,以改善CPU使用和内存分配。到目前为止,我们已经提交了19个带有28种不同性能优化的拉装重新要求,其中11个PR已获得项目所有者的批准。
translated by 谷歌翻译
软件开发人员将源代码内的日志记录嵌入为现代软件开发中的命令占空税,因为日志文件是跟踪运行时系统问题和故障排除系统管理任务所必需的。但是,当前的日志记录过程主要是手动,因此,日志语句的适当放置和内容仍然是挑战。为了克服这些挑战,旨在自动化日志放置并预测其内容的方法,即“来到哪里以及登录的地方”,具有很高的兴趣。因此,我们专注于通过利用源代码克隆和自然语言处理(NLP)来预测日志语句的位置(即,其中)和描述(即,什么),因为这些方法为日志预测提供了额外的上下文和优点。具体而言,我们指导我们的研究三项研究问题(RQS):( RQ1)如何利用代码片段,即代码克隆,用于日志语句预测如何? (RQ2)如何扩展方法以自动执行日志语句的描述? (RQ3)所提出的方法是如何有效的日志位置和描述预测?为了追求我们的RQ,我们对七个开源Java项目进行了实验研究。我们介绍了更新和改进的日志感知代码克隆检测方法,以预测日志记录语句(RQ1)的位置。然后,我们纳入自然语言处理(NLP)和深度学习方法,以自动化日志语句的描述预测(RQ2)。我们的分析表明,我们的混合NLP和Code-CC'd检测方法(NLP CC'd)优于常规克隆探测器,平均地查找日志声明位置,并在Bleu和Rouge分数上实现了40.86%的性能,以预测伐木的描述与先前研究(RQ3)相比的陈述。
translated by 谷歌翻译