由于有效的检索速度和储存率低,因此学习哈希已被广泛用于视觉检索任务。但是,现有的哈希方法假定查询和检索样品位于同一域内的均匀特征空间中。结果,它们不能直接应用于异质的跨域检索。在本文中,我们提出了一个广义图像转移检索(GITR)问题,该问题遇到了两个关键的瓶颈:1)查询和检索样品可能来自不同的域,导致不可避免的{域分布gap}; 2)两个域的特征可能是异质的或未对准的,从而增加了{特征差距}。为了解决GITR问题,我们提出了一个不对称的转移哈希(ATH)框架,其无监督/半监督/监督的实现。具体而言,ATH通过两个不对称的哈希函数之间的差异来表征域分布差距,并借助于跨域数据构建的新型自适应双分部分图,从而最小化特征差距。通过共同优化不对称的哈希功能和两分图,不仅可以实现知识转移,而且还可以避免由特征比对引起的信息损失。同时,为了减轻负转移,通过涉及域亲和图来保留单域数据的内在几何结构。对不同GITR子任务下的单域和跨域基准测试的广泛实验表明,与最新的哈希方法相比,我们的ATH方法的优越性。
translated by 谷歌翻译
最近,深度散列方法已广泛用于图像检索任务。大多数现有的深度散列方法采用一对一量化以降低信息损失。然而,这种类无关的量化不能为网络培训提供歧视反馈。此外,这些方法仅利用单个标签来集成散列函数学习数据的监督信息,这可能导致较差的网络泛化性能和相对低质量的散列代码,因为数据的帧间信息完全忽略。在本文中,我们提出了一种双语义非对称散列(DSAH)方法,其在三倍的约束下产生鉴别性哈希码。首先,DSAH在进行类结构量化之前利用类,以便在量化过程中传输类信息。其次,设计简单但有效的标签机制旨在表征类内的紧凑性和数据间数据间可分离性,从而实现了语义敏感的二进制代码学习。最后,设计了一种有意义的成对相似性保存损耗,以最小化基于亲和图的类相关网络输出之间的距离。利用这三个主要组件,可以通过网络生成高质量的哈希代码。在各种数据集上进行的广泛实验表明了DSAH的优越性与最先进的深度散列方法相比。
translated by 谷歌翻译
由于需要经济的储存和二元法规的效率,因此无监督的哈希对二元表示学习引起了很多关注。它旨在编码锤子空间中的高维特征,并在实例之间保持相似性。但是,大多数现有方法在基于多种的方法中学习哈希功能。这些方法捕获了数据的局部几何结构(即成对关系),并且在处理具有不同语义信息的实际特征(例如颜色和形状)的真实情况时缺乏令人满意的性能。为了应对这一挑战,在这项工作中,我们提出了一种有效的无监督方法,即共同个性化的稀疏哈希(JPSH),以进行二进制表示学习。具体来说,首先,我们提出了一个新颖的个性化哈希模块,即个性化的稀疏哈希(PSH)。构建了不同的个性化子空间,以反映不同群集的特定类别属性,同一群集中的自适应映射实例与同一锤子空间。此外,我们为不同的个性化子空间部署稀疏约束来选择重要功能。我们还收集了其他群集的优势,以避免过度拟合,以构建PSH模块。然后,为了在JPSH中同时保留语义和成对的相似性,我们将基于PSH和歧管的哈希学习纳入无缝配方中。因此,JPSH不仅将这些实例与不同的集群区分开,而且还保留了集群中的本地邻里结构。最后,采用了交替优化算法,用于迭代捕获JPSH模型的分析解决方案。在四个基准数据集上进行的大量实验验证了JPSH是否在相似性搜索任务上优于几个哈希算法。
translated by 谷歌翻译
哈希(Hashing)将项目数据投入二进制代码已显示出由于其储存量低和高查询速度而显示出跨模式检索的非凡人才。尽管在某些情况下取得了经验成功,但现有的跨模式散列方法通常不存在带有大量标记信息的数据时跨模式差距跨模式差距。为了避免以分裂和纠纷策略的激励,我们提出了深层的歧管散列(DMH),这是一种新颖的方法,是将半分配的无监督的交叉模式检索分为三个子问题,并建立一个简单而又简单而又又有一个简单的方法每个子问题的效率模型。具体而言,第一个模型是通过基于多种学习的半生数据补充的半生数据来构建的,用于获得模态不变的特征,而第二个模型和第三个模型旨在分别学习哈希码和哈希功能。在三个基准上进行的广泛实验表明,与最先进的完全配对和半成本无监督的跨模式散列方法相比,我们的DMH的优势。
translated by 谷歌翻译
大量的现实数据可以由大规模网络自然表示,该网络需要高效有效的学习算法。同时,标签可能仅适用于某些网络,这要求这些算法能够适应未标记的网络。域自适应哈希学习在许多实际任务中在计算机视觉社区中取得了巨大的成功,因为在检索时间和存储足迹中的成本较低。但是,它尚未应用于多域网络。在这项工作中,我们通过为网络(称为Udah)开发无监督的域自适应哈希学习方法来弥合这一差距。具体而言,我们开发了四个{特定于任务但相关的}组件:(1)通过硬组对比损失进行网络结构保存,(2)无放松的监督哈希,(3)跨域相交的歧视者和(4)语义中心对齐。我们进行了广泛的实验,以评估我们方法对包括链接预测,节点分类和邻居建议在内的一系列任务的有效性和效率。我们的评估结果表明,我们的模型比所有任务上最先进的常规离散嵌入方法的性能更好。
translated by 谷歌翻译
In recent years, deep neural networks have emerged as a dominant machine learning tool for a wide variety of application domains. However, training a deep neural network requires a large amount of labeled data, which is an expensive process in terms of time, labor and human expertise. Domain adaptation or transfer learning algorithms address this challenge by leveraging labeled data in a different, but related source domain, to develop a model for the target domain. Further, the explosive growth of digital data has posed a fundamental challenge concerning its storage and retrieval. Due to its storage and retrieval efficiency, recent years have witnessed a wide application of hashing in a variety of computer vision applications. In this paper, we first introduce a new dataset, Office-Home, to evaluate domain adaptation algorithms. The dataset contains images of a variety of everyday objects from multiple domains. We then propose a novel deep learning framework that can exploit labeled source data and unlabeled target data to learn informative hash codes, to accurately classify unseen target data. To the best of our knowledge, this is the first research effort to exploit the feature learning capabilities of deep neural networks to learn representative hash codes to address the domain adaptation problem. Our extensive empirical studies on multiple transfer tasks corroborate the usefulness of the framework in learning efficient hash codes which outperform existing competitive baselines for unsupervised domain adaptation.
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
translated by 谷歌翻译
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
translated by 谷歌翻译
由于在大异构数据上加速查询时间的同时减少存储的优点,已经广泛研究了跨模型散列,以便对多模态数据的近似邻近搜索进行广泛研究。大多数散列方法假设培训数据是类平衡的。但是,在实践中,现实世界数据通常具有长尾的分布。在本文中,我们介绍了一种基于元学习的跨模态散列方法(MetacMH)来处理长尾数据。由于尾部类中缺乏培训样本,MetacMH首先从不同模式中的数据中学习直接功能,然后引入关联内存模块,以了解尾部类别的样本的存储器功能。然后,它结合了直接和内存功能以获得每个样本的元特征。对于长尾分布的头部类别的样本,直接功能的重量越大,因为有足够的训练数据来学习它们;虽然对于罕见的类,但内存功能的重量越大。最后,MetacMH使用似然损耗函数来保持不同模式中的相似性,并以端到端的方式学习哈希函数。长尾数据集的实验表明,MetacMH比最先进的方法表现出明显好,特别是在尾部课上。
translated by 谷歌翻译
跨模式哈希是解决大型多媒体检索问题的成功方法。提出了许多基于矩阵分解的哈希方法。但是,现有方法仍然在一些问题上遇到困难,例如如何有效地生成二元代码,而不是直接放松它们的连续性。此外,大多数现有方法选择使用$ n \ times n $相似性矩阵进行优化,这使得内存和计算无法承受。在本文中,我们提出了一种新型的不对称可伸缩式模式哈希(ASCMH)来解决这些问题。首先,它引入了集体矩阵分解,以从不同模态的内核特征中学习一个共同的潜在空间,然后将相似性矩阵优化转换为距距离距离差异问题,并借助语义标签和共同的潜在空间。因此,$ n \ times n $不对称优化的计算复杂性得到了缓解。在一系列哈希码中,我们还采用了标签信息的正交约束,这对于搜索准确性是必不可少的。因此,可以大大减少计算的冗余。为了有效的优化并可扩展到大规模数据集,我们采用了两步方法,而不是同时优化。在三个基准数据集上进行了广泛的实验:Wiki,Mirflickr-25K和NUS范围内,表明我们的ASCMH在准确性和效率方面表现出了最先进的跨模式散列方法。
translated by 谷歌翻译
跨模态散列(CMH)是跨模型近似最近邻搜索中最有前途的方法之一。大多数CMH解决方案理想地假设培训和测试集的标签是相同的。但是,通常违反假设,导致零拍摄的CMH问题。最近解决此问题的努力侧重于使用标签属性将知识转移到未见的类。但是,该属性与多模态数据的特征隔离。为了减少信息差距,我们介绍了一种名为LAEH的方法(嵌入零拍跨模型散列的标签属性)。 Laeh首先通过Word2Vec模型获取标签的初始语义属性向量,然后使用转换网络将它们转换为常见的子空间。接下来,它利用散列向量和特征相似矩阵来指导不同方式的特征提取网络。与此同时,Laeh使用属性相似性作为标签相似度的补充,以纠正标签嵌入和常见子空间。实验表明,Laeh优于相关代表零射和跨模态散列方法。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
转移学习旨在通过从源域转移知识来学习目标域的分类器。但是,由于两个主要问题:特征差异和分配差异,在实践中,转移学习可能是一个非常困难的问题。在本文中,我们提出了一个名为TLF的框架,该框架通过从具有许多标记记录的源域中传输知识来为目标域构建一个只有少量标记培训记录的分类器。尽管现有的方法通常集中在一个问题上,而将另一个问题留在进一步的工作中,但TLF能够同时处理这两个问题。在TLF中,我们通过识别作为桥接域的枢轴的共享标签分布来减轻特征差异。我们通过同时优化域之间的结构风险功能,联合分布以及边缘分布的基础一致性来处理分布差异。此外,对于歧管一致性,我们通过识别记录的k最近邻居来利用其内在属性,其中k的值在tlf中自动确定。此外,由于不需要负转移,因此我们仅考虑在知识传输过程中属于源枢轴的源记录。我们评估了七个公共可用天然数据集的TLF,并将TLF的性能与14个最先进技术的性能进行比较。我们还评估了TLF在某些具有挑战性的情况下的有效性。我们的实验结果,包括统计标志测试和Nemenyi测试分析,表明所提出的框架比最先进的技术具有明显的优势。
translated by 谷歌翻译
由于其在计算和存储的效率,散列广泛应用于大型多媒体数据上的多模式检索。在本文中,我们提出了一种用于可伸缩图像文本和视频文本检索的新型深度语义多模式散列网络(DSMHN)。所提出的深度散列框架利用2-D卷积神经网络(CNN)作为骨干网络,以捕获图像文本检索的空间信息,而3-D CNN作为骨干网络以捕获视频的空间和时间信息 - 文本检索。在DSMHN中,通过显式保留帧间性相似性和岩石性语义标签,共同学习两组模态特定散列函数。具体地,假设学习散列代码应该是对分类任务的最佳选择,通过在所得哈希代码上嵌入语义标签来共同训练两个流网络以学习散列函数。此外,提出了一种统一的深层多模式散列框架,通过利用特征表示学习,互相相似度 - 保存学习,语义标签保留学习和哈希函数学习同时利用不同类型的损耗功能来学习紧凑和高质量的哈希码。该提议的DSMHN方法是用于图像文本和视频文本检索的通用和可扩展的深度散列框架,其可以灵活地集成在不同类型的损耗功能中。我们在四个广泛使用的多媒体检索数据集中对单一模态和跨模型检索任务进行广泛的实验。图像文本和视频文本检索任务的实验结果表明DSMHN显着优于最先进的方法。
translated by 谷歌翻译
Hashing has been widely researched to solve the large-scale approximate nearest neighbor search problem owing to its time and storage superiority. In recent years, a number of online hashing methods have emerged, which can update the hash functions to adapt to the new stream data and realize dynamic retrieval. However, existing online hashing methods are required to update the whole database with the latest hash functions when a query arrives, which leads to low retrieval efficiency with the continuous increase of the stream data. On the other hand, these methods ignore the supervision relationship among the examples, especially in the multi-label case. In this paper, we propose a novel Fast Online Hashing (FOH) method which only updates the binary codes of a small part of the database. To be specific, we first build a query pool in which the nearest neighbors of each central point are recorded. When a new query arrives, only the binary codes of the corresponding potential neighbors are updated. In addition, we create a similarity matrix which takes the multi-label supervision information into account and bring in the multi-label projection loss to further preserve the similarity among the multi-label data. The experimental results on two common benchmarks show that the proposed FOH can achieve dramatic superiority on query time up to 6.28 seconds less than state-of-the-art baselines with competitive retrieval accuracy.
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
零射击跨模式检索(ZS-CMR)处理了来自看不见类别的异源数据之间的检索问题。通常,为了确保概括,使用自然语言处理(NLP)模型的预定义类嵌入方式用于构建公共空间。在本文中,我们考虑了一种完全不同的方法来从信息理论的角度考虑构造(或学习)通用锤击空间的完全不同的方法,而不是使用额外的NLP模型来定义公共空间。我们将模型称为信息理论哈希(ITH),该图案由两个级联模块组成:一个自适应信息聚合(AIA)模块;和语义保存编码(SPE)模块。具体而言,我们的AIA模块从相关信息的原理(PRI)中汲取灵感来构建一个共同空间,该空间可适应地汇总了不同数据模式的固有语义,并滤除了多余或无关紧要的信息。另一方面,我们的SPE模块通过保留固有语义与元素的Kullback-Leibler(KL)差异的相似性,进一步生成了不同模态的哈希代码。还施加了总相关性项,以减少哈希码不同维度之间的冗余。在三个基准数据集上进行了足够的实验,证明了ZS-CMR中提出的ITH的优势。源代码在补充材料中可用。
translated by 谷歌翻译
Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaptation methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but few timely reviews the emerging deep learning based methods. In this paper, we provide a comprehensive survey of deep domain adaptation methods for computer vision applications with four major contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to the properties of data that define how two domains are diverged. Second, we summarize deep domain adaptation approaches into several categories based on training loss, and analyze and compare briefly the state-of-the-art methods under these categories. Third, we overview the computer vision applications that go beyond image classification, such as face recognition, semantic segmentation and object detection. Fourth, some potential deficiencies of current methods and several future directions are highlighted.
translated by 谷歌翻译
Transfer learning is established as an effective technology in computer vision for leveraging rich labeled data in the source domain to build an accurate classifier for the target domain. However, most prior methods have not simultaneously reduced the difference in both the marginal distribution and conditional distribution between domains. In this paper, we put forward a novel transfer learning approach, referred to as Joint Distribution Adaptation (JDA). Specifically, JDA aims to jointly adapt both the marginal distribution and conditional distribution in a principled dimensionality reduction procedure, and construct new feature representation that is effective and robust for substantial distribution difference. Extensive experiments verify that JDA can significantly outperform several state-of-the-art methods on four types of cross-domain image classification problems.
translated by 谷歌翻译