在过去几年中,深度卷积神经网络在低光图像增强中取得了令人印象深刻的成功。深度学习方法大多通过堆叠网络结构并加深网络深度来提高特征提取的能力。在单个时导致更多的运行时间成本为了减少推理时间,在完全提取本地特征和全局特征的同时,我们通过SGN定期,我们提出了基于广泛的自我引导网络(Absgn)的现实世界低灯图像增强。策略是一种广泛的策略处理不同曝光的噪音。所提出的网络被许多主流基准验证.Aditional实验结果表明,所提出的网络优于最先进的低光图像增强解决方案。
translated by 谷歌翻译
在弱照明条件下捕获的图像可能会严重降低图像质量。求解一系列低光图像的降解可以有效地提高图像的视觉质量和高级视觉任务的性能。在本研究中,提出了一种新的基于RETINEX的实际网络(R2RNET),用于低光图像增强,其包括三个子网:DECOM-NET,DENOISE-NET和RELIGHT-NET。这三个子网分别用于分解,去噪,对比增强和细节保存。我们的R2RNET不仅使用图像的空间信息来提高对比度,还使用频率信息来保留细节。因此,我们的模型对所有退化的图像进行了更强大的结果。与在合成图像上培训的最先前的方法不同,我们收集了第一个大型现实世界配对的低/普通灯图像数据集(LSRW数据集),以满足培训要求,使我们的模型具有更好的现实世界中的泛化性能场景。对公共数据集的广泛实验表明,我们的方法在定量和视觉上以现有的最先进方法优于现有的现有方法。此外,我们的结果表明,通过使用我们在低光条件下的方法获得的增强的结果,可以有效地改善高级视觉任务(即面部检测)的性能。我们的代码和LSRW数据集可用于:https://github.com/abcdef2000/r2rnet。
translated by 谷歌翻译
低光图像增强功能是一个经典的计算机视觉问题,旨在从低光图像中恢复正常暴露图像。但是,该领域常用的卷积神经网络擅长对空间结构域中的低频局部结构特征进行取样,从而导致重建图像的纹理细节不清楚。为了减轻这个问题,我们建议使用傅立叶系数进行新的模块,该模块可以在频率阶段的语义约束下恢复高质量的纹理细节并补充空间域。此外,我们使用带有不同接收场的扩张卷积为图像空间域设计了一个简单有效的模块,以减轻频繁下采样引起的细节损失。我们将上述部分集成到端到端的双分支网络中,并设计一个新颖的损失委员会和一个自适应融合模块,以指导网络灵活地结合空间和频域特征,以产生更令人愉悦的视觉效果。最后,我们在公共基准上评估了拟议的网络。广泛的实验结果表明,我们的方法的表现优于许多现有的最先进的结果,表现出出色的性能和潜力。
translated by 谷歌翻译
基于深度学习的低光图像增强方法通常需要巨大的配对训练数据,这对于在现实世界的场景中捕获是不切实际的。最近,已经探索了无监督的方法来消除对成对训练数据的依赖。然而,由于没有前衣,它们在不同的现实情景中表现得不稳定。为了解决这个问题,我们提出了一种基于先前(HEP)的有效预期直方图均衡的无监督的低光图像增强方法。我们的作品受到了有趣的观察,即直方图均衡增强图像的特征图和地面真理是相似的。具体而言,我们制定了HEP,提供了丰富的纹理和亮度信息。嵌入一​​个亮度模块(LUM),它有助于将低光图像分解为照明和反射率图,并且反射率图可以被视为恢复的图像。然而,基于Retinex理论的推导揭示了反射率图被噪声污染。我们介绍了一个噪声解剖学模块(NDM),以解除反射率图中的噪声和内容,具有不配对清洁图像的可靠帮助。通过直方图均衡的先前和噪声解剖,我们的方法可以恢复更精细的细节,更有能力抑制现实世界低光场景中的噪声。广泛的实验表明,我们的方法对最先进的无监督的低光增强算法有利地表现出甚至与最先进的监督算法匹配。
translated by 谷歌翻译
在弱光条件下获得的图像将严重影响图像的质量。解决较差的弱光图像质量的问题可以有效地提高图像的视觉质量,并更好地改善计算机视觉的可用性。此外,它在许多领域都具有非常重要的应用。本文提出了基于视网膜的Deanet,以增强弱光图像。它将图像的频率信息和内容信息结合到三个子网络中:分解网络,增强网络和调整网络。这三个子网络分别用于分解,变形,对比度增强和细节保存,调整和图像产生。我们的模型对于所有低光图像都具有良好的良好结果。该模型对公共数据集进行了培训,实验结果表明,就视力和质量而言,我们的方法比现有的最新方法更好。
translated by 谷歌翻译
低光图像增强(LLIE)旨在提高在环境中捕获的图像的感知或解释性,较差的照明。该领域的最新进展由基于深度学习的解决方案为主,其中许多学习策略,网络结构,丢失功能,培训数据等已被采用。在本文中,我们提供了全面的调查,以涵盖从算法分类到开放问题的各个方面。为了检查现有方法的概括,我们提出了一个低光图像和视频数据集,其中图像和视频是在不同的照明条件下的不同移动电话的相机拍摄的。除此之外,我们首次提供统一的在线平台,涵盖许多流行的LLIE方法,其中结果可以通过用户友好的Web界面生产。除了在公开和我们拟议的数据集上对现有方法的定性和定量评估外,我们还验证了他们在黑暗中的脸部检测中的表现。这项调查与拟议的数据集和在线平台一起作为未来研究的参考来源和促进该研究领域的发展。拟议的平台和数据集以及收集的方法,数据集和评估指标是公开可用的,并将经常更新。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
在光子 - 稀缺情况下的成像引入了许多应用的挑战,因为捕获的图像具有低信噪比和较差的亮度。在本文中,我们通过模拟量子图像传感器(QIS)的成像来研究低光子计数条件下的原始图像恢复。我们开发了一个轻量级框架,由多级金字塔去噪网络(MPDNET)和亮度调整(LA)模块组成,以实现单独的去噪和亮度增强。我们框架的主要组成部分是多跳过的剩余块(MARB),其集成了多尺度特征融合和注意机制,以实现更好的特征表示。我们的MPDNET采用拉普拉斯金字塔的想法,以了解不同级别的小规模噪声图和大规模的高频细节,在多尺度输入图像上进行特征提取,以编码更丰富的上下文信息。我们的LA模块通过估计其照明来增强去噪图像的亮度,这可以更好地避免颜色变形。广泛的实验结果表明,通过抑制噪声并有效地恢复亮度和颜色,我们的图像恢复器可以在具有各种光子水平的具有各种光子水平的降解图像上实现优异的性能。
translated by 谷歌翻译
在现实世界中,在雾度下拍摄的图像的降解可以是非常复杂的,其中雾度的空间分布从图像变化到图像。最近的方法采用深神经网络直接从朦胧图像中恢复清洁场景。然而,由于悖论由真正捕获的雾霾的变化和当前网络的固定退化参数引起的悖论,最近在真实朦胧的图像上的脱水方法的泛化能力不是理想的。解决现实世界建模问题阴霾退化,我们建议通过对不均匀雾度分布的鉴定和建模密度来解决这个问题。我们提出了一种新颖的可分离混合注意力(SHA)模块来编码雾霾密度,通过捕获正交方向上的特征来实现这一目标。此外,提出了密度图以明确地模拟雾度的不均匀分布。密度图以半监督方式生成位置编码。这种雾度密度感知和建模有效地捕获特征水平的不均匀分布性变性。通过SHA和密度图的合适组合,我们设计了一种新型的脱水网络架构,实现了良好的复杂性性能权衡。两个大规模数据集的广泛实验表明,我们的方法通过量化和定性地通过大幅度超越所有最先进的方法,将最佳发布的PSNR度量从28.53 DB升高到Haze4K测试数据集和在SOTS室内测试数据集中的37.17 dB至38.41 dB。
translated by 谷歌翻译
增强低光图像的质量在许多图像处理和多媒体应用中起着非常重要的作用。近年来,已经开发出各种深入的学习技术来解决这一具有挑战性的任务。典型的框架是同时估计照明和反射率,但它们忽略了在特征空间中封装的场景级上下文信息,从而导致许多不利的结果,例如,细节损失,颜色不饱和,工件等。为了解决这些问题,我们开发了一个新的上下文敏感的分解网络架构,用于利用空间尺度上的场景级上下文依赖项。更具体地说,我们构建了一种双流估计机制,包括反射率和照明估计网络。我们设计一种新的上下文敏感的分解连接来通过结合物理原理来桥接双流机制。进一步构建了空间改变的照明引导,用于实现照明组件的边缘感知平滑性特性。根据不同的培训模式,我们构建CSDNet(配对监督)和CSDGAN(UNS满分监督),以充分评估我们设计的架构。我们在七个测试基准测试中测试我们的方法,以进行大量的分析和评估的实验。由于我们设计的上下文敏感的分解连接,我们成功实现了出色的增强结果,这完全表明我们对现有最先进的方法的优势。最后,考虑到高效的实际需求,我们通过减少通道数来开发轻量级CSDNet(命名为LiteCsdnet)。此外,通过为这两个组件共享编码器,我们获得更轻量级的版本(短路SLITECSDNET)。 SLITECSDNET只包含0.0301M参数,但达到与CSDNET几乎相同的性能。
translated by 谷歌翻译
许多图像处理网络在整个输入图像上应用一组静态卷积核,这是自然图像的次优,因为它们通常由异质视觉模式组成。最近在分类,分割和图像恢复方面的工作已经证明,动态核优于局部图像统计数据的静态内核。然而,这些工作经常采用每像素卷积核,这引入了高存储器和计算成本。为了在没有显着开销的情况下实现空间变化的处理,我们呈现\ TextBF {Malle} Chable \ TextBF {CONV} olution(\ textbf {malleconv}),作为动态卷积的有效变体。 \我们的权重由能够在特定空间位置产生内容相关的输出的有效预测器网络动态地产生。与以前的作品不同,\我们从输入生成一组更小的空间变化内核,这会扩大网络的接收领域,并显着降低计算和内存成本。然后通过具有最小内存开销的高效切片和-Conver操作员将这些内核应用于全分辨率的特征映射。我们进一步使用MalleConv建立了高效的去噪网络,被创建为\ textbf {mallenet}。它实现了高质量的结果,没有非常深的架构,例如,它是8.91 $ \ times $的速度快于最好的去噪算法(Swinir),同时保持类似的性能。我们还表明,添加到标准的基于卷积的骨干的单个\我们可以贡献显着降低计算成本或以相似的成本提高图像质量。项目页面:https://yifanjiang.net/malleconv.html
translated by 谷歌翻译
由于波长依赖性的光衰减,折射和散射,水下图像通常遭受颜色变形和模糊的细节。然而,由于具有未变形图像的数量有限数量的图像作为参考,培训用于各种降解类型的深度增强模型非常困难。为了提高数据驱动方法的性能,必须建立更有效的学习机制,使得富裕监督来自有限培训的示例资源的信息。在本文中,我们提出了一种新的水下图像增强网络,称为Sguie-net,其中我们将语义信息引入了共享常见语义区域的不同图像的高级指导。因此,我们提出了语义区域 - 明智的增强模块,以感知不同语义区域从多个尺度的劣化,并将其送回从其原始比例提取的全局注意功能。该策略有助于实现不同的语义对象的强大和视觉上令人愉快的增强功能,这应该由于对差异化增强的语义信息的指导应该。更重要的是,对于在训练样本分布中不常见的那些劣化类型,指导根据其语义相关性与已经良好的学习类型连接。对公共数据集的广泛实验和我们拟议的数据集展示了Sguie-Net的令人印象深刻的表现。代码和建议的数据集可用于:https://trentqq.github.io/sguie-net.html
translated by 谷歌翻译
在现实世界中,具有挑战性的照明条件(低光,不渗透和过度暴露)不仅具有令人不愉快的视觉外观,而且还要污染计算机视觉任务。现有的光自适应方法通常分别处理每种条件。而且,其中大多数经常在原始图像上运行或过度简化相机图像信号处理(ISP)管道。通过将光转换管道分解为局部和全局ISP组件,我们提出了一个轻巧的快速照明自适应变压器(IAT),其中包括两个变压器式分支:本地估计分支和全球ISP分支。尽管本地分支估算与照明有关的像素的本地组件,但全局分支定义了可学习的Quires,可以参加整个图像以解码参数。我们的IAT还可以在各种光条件下同时进行对象检测和语义分割。我们已经在2个低级任务和3个高级任务上对多个现实世界数据集进行了广泛评估。我们的IAT只有90K参数和0.004S处理速度(不包括高级模块),其IAT始终达到了卓越的性能。代码可从https://github.com/cuiziteng/illumination-aptive-transformer获得
translated by 谷歌翻译
低灯图像挑战人类的感知和计算机视觉算法。使算法强大地为计算摄影和计算机视觉应用(如实时检测和分割)开明低光图像至关重要。本文提出了一种语义引导的零射低亮增强网络,其在没有配对图像,未配对数据集和分段注释的情况下培训。首先,我们使用深度可分离卷积设计增强因子提取网络,以便有效估计低光图像的像素方向缺点。其次,我们提出了一种经常性图像增强网络,以具有价格实惠的模型尺寸来逐渐增强低光图像。最后,我们介绍了一个无监督的语义分割网络,用于保留密集增强期间的语义信息。基准数据集和低光视频的广泛实验表明,我们的模型优于先前的最先进的定性和定量。我们进一步探讨了所提出的低光检测和分割方法的好处。
translated by 谷歌翻译
摆脱拟合配对训练数据的基本限制,最近无监督的低光增强方法在调整图像的照明和对比度方面表现出色。但是,对于无监督的低光增强,由于缺乏对详细信号的监督而导致的剩余噪声抑制问题在很大程度上阻碍了这些方法在现实世界应用中的广泛部署。在本文中,我们提出了一种新型的自行车相互作用生成对抗网络(CIGAN),以实现无监督的低光图像增强,它不仅能够更好地在低/正常光图像之间更好地传输照明分布,还可以操纵两个域之间的详细信号,例如。 ,在环状增强/降解过程中抑制/合成逼真的噪声。特别是,提出的低光引导转换馈送馈送从增强gan(Egan)发电机的低光图像的特征到降解GAN(DGAN)的发生器。借助真正的弱光图像的信息,DGAN可以在低光图像中综合更逼真的不同照明和对比度。此外,DGAN中的特征随机扰动模块学会了增加特征随机性以产生各种特征分布,从而说服了合成的低光图像以包含逼真的噪声。广泛的实验既证明了所提出的方法的优越性,又证明了每个模块在CIGAN中的有效性。
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
使用注意机制的深度卷积神经网络(CNN)在动态场景中取得了巨大的成功。在大多数这些网络中,只能通过注意图精炼的功能传递到下一层,并且不同层的注意力图彼此分开,这并不能充分利用来自CNN中不同层的注意信息。为了解决这个问题,我们引入了一种新的连续跨层注意传播(CCLAT)机制,该机制可以利用所有卷积层的分层注意信息。基于CCLAT机制,我们使用非常简单的注意模块来构建一个新型残留的密集注意融合块(RDAFB)。在RDAFB中,从上述RDAFB的输出中推断出的注意图和每一层直接连接到后续的映射,从而导致CRLAT机制。以RDAFB为基础,我们为动态场景Deblurring设计了一个名为RDAFNET的有效体系结构。基准数据集上的实验表明,所提出的模型的表现优于最先进的脱毛方法,并证明了CCLAT机制的有效性。源代码可在以下网址提供:https://github.com/xjmz6/rdafnet。
translated by 谷歌翻译
随着移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与新型算法的发展。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像(MIPI)的发展。为了弥合差距,我们介绍了第一个MIPI挑战,包括五个曲目,这些曲目着重于新型图像传感器和成像算法。在本文中,我们总结并审查了MIPI 2022上的分配摄像头(UDC)图像恢复轨道。总共,成功注册了167名参与者,并在最终测试阶段提交了19个团队。在这项挑战中开发的解决方案在播放摄像头映像修复局上实现了最新的性能。本文提供了此挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
translated by 谷歌翻译
夜间摄影通常由于昏暗的环境和长期使用而遭受弱光和模糊问题。尽管现有的光增强和脱毛方法可以单独解决每个问题,但一系列此类方法不能和谐地适应可见性和纹理的共同降解。训练端到端网络也是不可行的,因为没有配对数据可以表征低光和模糊的共存。我们通过引入新的数据合成管道来解决该问题,该管道对现实的低光模糊降解进行建模。使用管道,我们介绍了第一个用于关节低光增强和去皮的大型数据集。数据集,LOL-BLUR,包含12,000个低Blur/正常出现的对,在不同的情况下具有不同的黑暗和运动模糊。我们进一步提出了一个名为LEDNET的有效网络,以执行关节弱光增强和脱毛。我们的网络是独一无二的,因为它是专门设计的,目的是考虑两个相互连接的任务之间的协同作用。拟议的数据集和网络都为这项具有挑战性的联合任务奠定了基础。广泛的实验证明了我们方法对合成和现实数据集的有效性。
translated by 谷歌翻译