大规模数据集在计算机视觉中起着至关重要的作用。但是当前的数据集盲目注释而没有与样品区分的区分,从而使数据收集效率低下且不计。开放的问题是如何积极地构建大型数据集。尽管先进的主动学习算法可能是答案,但我们在实验上发现它们在分发数据广泛的现实注释方案中是la脚的。因此,这项工作为现实的数据集注释提供了一个新颖的主动学习框架。配备了此框架,我们构建了一个高质量的视觉数据集 - 竹子,由69m的图像分类注释,带有119K类别,带有809个类别的28m对象边界框注释。我们通过从几个知识库中整合的层次分类法来组织这些类别。分类注释比Imagenet22K大四倍,检测的注释比Object365大三倍。与ImagEnet22K和Objects365相比,预先训练的竹子在各种下游任务中实现了卓越的性能(分类的6.2%增长,检测到2.1%的增长)。我们认为,我们的积极学习框架和竹子对于将来的工作至关重要。
translated by 谷歌翻译
尽管在特定的视觉领域(例如面部,狗和地方)取得了令人印象深刻的表现,但非常需要对许多天然视觉域的全面表示。但是,现有的基准是偏见且效率低下以评估Omni-Vision表示形式 - 这些基准测试仅包括几个特定领域,或者以付出大多数领域覆盖大多数领域,而这些领域却包含了许多具有广泛领域重叠的数据集。在本文中,我们提出了Omni-Realm基准(Omnibenchmark)。它包括21个领域的数据集,具有7,372个概念和1,074,346张图像。在没有语义重叠的情况下,这些数据集全面且有效地涵盖了大多数视觉领域。此外,我们提出了一个新的监督对比学习框架,即关系对比度学习(RECO),以提供更好的Omni-Vision代表。除了从同一概念中拉出两个实例(典型的有监督的对比学习框架),Reco还从同一语义领域中提取了两个实例,从而编码概念之间的语义关系,并促进Omni-Vision代表学习。我们在Omnibenchmark上基准的RECO和OMNI-Vision代表研究中的其他进展,这些研究在体系结构(从CNN到变压器到变形金刚)以及学习范式(从监督学习到自我监督学习)方面有所不同。我们说明了RECO的上级与其他受监督的对比学习方法相比,并揭示了多个实际观察,以促进未来的研究。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
Recently, the self-supervised pre-training paradigm has shown great potential in leveraging large-scale unlabeled data to improve downstream task performance. However, increasing the scale of unlabeled pre-training data in real-world scenarios requires prohibitive computational costs and faces the challenge of uncurated samples. To address these issues, we build a task-specific self-supervised pre-training framework from a data selection perspective based on a simple hypothesis that pre-training on the unlabeled samples with similar distribution to the target task can bring substantial performance gains. Buttressed by the hypothesis, we propose the first yet novel framework for Scalable and Efficient visual Pre-Training (SEPT) by introducing a retrieval pipeline for data selection. SEPT first leverage a self-supervised pre-trained model to extract the features of the entire unlabeled dataset for retrieval pipeline initialization. Then, for a specific target task, SEPT retrievals the most similar samples from the unlabeled dataset based on feature similarity for each target instance for pre-training. Finally, SEPT pre-trains the target model with the selected unlabeled samples in a self-supervised manner for target data finetuning. By decoupling the scale of pre-training and available upstream data for a target task, SEPT achieves high scalability of the upstream dataset and high efficiency of pre-training, resulting in high model architecture flexibility. Results on various downstream tasks demonstrate that SEPT can achieve competitive or even better performance compared with ImageNet pre-training while reducing the size of training samples by one magnitude without resorting to any extra annotations.
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
旨在促进现实世界,不断发展和可扩展的自主驾驶系统,我们展示了一个大规模数据集,用于通过从原始数据学习来标准化不同自我监督和半监督方法的评估,这是第一和最大的数据集到期。现有的自主驱动系统严重依赖于“完善”视觉感知模型(即,检测)使用广泛的注释数据培训,以确保安全性。然而,在部署强大的自动驾驶系统时,精致地标记所有情景和环境的实例(即夜,极端天气,城市)是不现实的。最近的自我监督和半监督学习的推进激励,希望通过协作利用大规模未标记的数据和少数标记数据来学习强大的检测模型。现有数据集只提供少量数据或涵盖具有完整注释的有限域,妨碍大规模预训练模型的探索。在这里,我们发布了一个大型2D自主/半监控的对象检测数据集,用于自动驾驶,名为SODA10M,其中包含1000万个未标记的图像和标有6个代表对象类别的20K图像。为了提高多样性,在不同天气条件下的27833个驾驶时间内收集图像,32个不同城市的时期和位置场景。我们提供广泛的实验和对现有的流行自主/半监督方法深度分析,并在自动驾驶范围内给出一些有趣的调查结果。实验表明,SODA10M可以作为不同的自我监督学习方法作为有前途的预训练数据集,这在微调驾驶域中的不同下游任务(即检测,语义/实例分段)进行微调时提供了卓越的性能。更多信息可以参考https://soda-2d.github.io。
translated by 谷歌翻译
自动视觉解对我们多样化和开放的世界需要计算机视觉模型,以概括为特定任务的最小定制,类似于人类视力。计算机视觉基础型号培训,培训多样化,大型数据集,可以适应各种下游任务,对该任务来解决现实世界计算机视觉应用而言至关重要。虽然现有的视觉基础模型如剪辑,对齐和吴道2.0主要集中在映射图像和文本表示到跨模型共享表示,我们介绍了一台新的计算机视觉基础模型,佛罗伦萨,扩大粗糙的表示(现场)到精细(对象),从静态(图像)到动态(视频),以及从RGB到多个模态(标题,深度)。通过从Web级图像文本数据中纳入通用视觉语言表示,我们的佛罗伦萨模型可以很容易地适应各种计算机视觉任务,例如分类,检索,对象检测,VQA,图像标题,视频检索和动作识别。此外,佛罗伦萨在许多类型的转移学习中表现出出色的表现:全面采样的微调,线性探测,几次射击传输和用于新颖图像和物体的零拍摄传输。所有这些属性对于我们的视觉基础模型至关重要,以提供通用视觉任务。佛罗伦萨实现了新的最先进的导致44个代表性基准,例如Imagenet-1K零射击分类,最高1精度为83.74,最高5个精度为97.18,62.4地图上的Coco微调, 80.36在VQA上,动力学-600上的87.8。
translated by 谷歌翻译
成对图像和文本的大型数据集越来越受到愿景和愿景和语言任务的通用表示。此类数据集已通过查询搜索引擎或收集HTML Alt-Text构建 - 由于Web数据是嘈杂的,因此它们需要复杂的过滤管道来维护质量。我们探索备用数据源以收集具有最小滤波的高质量数据。我们介绍Redcaps - 从Reddit收集的12M图像文本对的大规模数据集。来自Reddit的图像和标题描绘并描述了各种各样的物体和场景。我们从手动策划的FuSoddits集中收集数据,这为粗略图像标签提供给粗略图像标签,并允许我们转向数据集组合而不标记单个实例。我们展示Redcaps培训的标题模型产生了人类优选的丰富和各种标题,并学习转移到许多下游任务的视觉表现。
translated by 谷歌翻译
通用视觉(GPV)系统是旨在解决各种视觉任务的模型,而无需进行架构更改。如今,GPV主要从大型完全监督的数据集中学习技能和概念。通过获取数据以迅速学习每个技能的每个概念,将GPV扩展到数万个概念都变得令人望而却步。这项工作提出了一种有效且廉价的替代方法:从监督数据集中学习技能,从Web图像搜索中学习概念,并利用GPV的关键特征:跨技能传递视觉知识的能力。我们使用跨越10K+视觉概念的1M+图像的数据集来演示3个基准上的两个现有GPV(GPV-1和VL-T5)的Webly Supumented概念扩展:5个基于可可的数据集(80个主要概念),这是一个新的策划系列,这是一个新的策划系列。基于OpenImages和VisualGenome存储库(〜500个概念)以及Web衍生的数据集(10K+概念)的5个数据集。我们还提出了一种新的体系结构GPV-2,该架构支持各种任务 - 从分类和本地化等视觉任务到Qu Viewer+语言任务,例如QA和字幕,再到更多的利基市场,例如人类对象互动检测。 GPV-2从Web数据中受益匪浅,并且在这些基准测试中胜过GPV-1和VL-T5。我们的数据,代码和Web演示可在https://prior.allenai.org/projects/gpv2上获得。
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
现有的开放式视频探测器通常通过利用不同形式的弱监督来扩大其词汇大小。这有助于推断出新的对象。开放式视频检测(OVD)中使用的两种流行形式的弱点,包括预审计的剪辑模型和图像级监督。我们注意到,这两种监督模式均未在检测任务中最佳地对齐:剪辑经过图像文本对培训,并且缺乏对象的精确定位,而图像级监督已与启发式方法一起使用,这些启发式方法无法准确指定本地对象区域。在这项工作中,我们建议通过从剪辑模型中执行以对象为中心的语言嵌入来解决此问题。此外,我们仅使用伪标记的过程来视觉上仅通过图像级监督对象,该过程提供高质量的对象建议,并有助于在训练过程中扩展词汇。我们通过新的重量转移函数在上述两个对象对准策略之间建立桥梁,该策略汇总了它们的免费强度。本质上,提出的模型试图最大程度地减少OVD设置中对象和以图像为中心表示之间的差距。在可可基准上,我们提出的方法在新颖类中实现了40.3 AP50,绝对11.9比以前的最佳性能获得了11.9的增长。对于LVIS,我们超过了5.0 Mask AP的最先进VILD模型,总体上有3.4个。 。代码:https://bit.ly/3byzoqp。
translated by 谷歌翻译
本文介绍了用于学习对象级别,语言感知和富含语义的视觉表示的接地语言图像预培训(GLIP)模型。 Glip统一对象检测和短语进行预培训。统一带来了两个好处:1)它允许GLIP从检测和接地数据中学习,以改善两个任务和引导良好的接地模型; 2)GLIP可以通过以自培训方式产生接地盒来利用大规模的图像文本对,使学习的表示是语义丰富的。在我们的实验中,我们在27M的接地数据上预先列车触胶,包括3M人的注释和24M Web爬网的图像文本对。学习的表示表明了强烈的零射击和对各种对象识别任务的可转换性。 1)直接在Coco和LVIS上评估(在训练期间没有在Coco中看到任何图像)时,Plip分别达到49.8 AP和26.9 AP,超过许多监督基线。 2)在COCO上微调后,GLIP在Val和61.5 AP上实现60.8 AP在测试开发上,超过先前的SOTA。 3)当转移到下游对象检测任务时,具有完全监控动态头的1次触发器竞争对手。代码将在https://github.com/microsoft/glip发布。
translated by 谷歌翻译
In this paper, we introduce a new large-scale object detection dataset, Objects365, which has 365 object categories over 600K training images. More than 10 million, high-quality bounding boxes are manually labeled through a three-step, carefully designed annotation pipeline. It is the largest object detection dataset (with full annotation) so far and establishes a more challenging benchmark for the community. Objects365 can serve as a better feature learning dataset for localization-sensitive tasks like object detection and semantic segmentation. The Objects365 pre-trained models significantly outperform ImageNet pre-trained models with 5.6 points gain (42 vs 36.4) based on the standard setting of 90K iterations on COCO benchmark. Even compared with much long training time like 540K iterations, our Objects365 pretrained model with 90K iterations still have 2.7 points gain (42 vs 39.3). Meanwhile, the finetuning time can be greatly reduced (up to 10 times) when reaching the same accuracy. Better generalization ability of Object365 has also been verified on CityPersons, VOC segmentation, and ADE tasks. The dataset as well as the pretrainedmodels have been released at www.objects365.org. * indicates equal contribution.
translated by 谷歌翻译
Recent aerial object detection models rely on a large amount of labeled training data, which requires unaffordable manual labeling costs in large aerial scenes with dense objects. Active learning is effective in reducing the data labeling cost by selectively querying the informative and representative unlabelled samples. However, existing active learning methods are mainly with class-balanced setting and image-based querying for generic object detection tasks, which are less applicable to aerial object detection scenario due to the long-tailed class distribution and dense small objects in aerial scenes. In this paper, we propose a novel active learning method for cost-effective aerial object detection. Specifically, both object-level and image-level informativeness are considered in the object selection to refrain from redundant and myopic querying. Besides, an easy-to-use class-balancing criterion is incorporated to favor the minority objects to alleviate the long-tailed class distribution problem in model training. To fully utilize the queried information, we further devise a training loss to mine the latent knowledge in the undiscovered image regions. Extensive experiments are conducted on the DOTA-v1.0 and DOTA-v2.0 benchmarks to validate the effectiveness of the proposed method. The results show that it can save more than 75% of the labeling cost to reach the same performance compared to the baselines and state-of-the-art active object detection methods. Code is available at https://github.com/ZJW700/MUS-CDB
translated by 谷歌翻译
主动学习旨在选择最具信息丰富的样本,以利用有限的注释预算。大多数现有的工作通过分别在每个数据集上多次重复耗时的模型训练和批量数据选择,遵循麻烦的管道。通过提出本文提出新的一般和有效的主动学习(GEAL)方法,挑战该地位QUO。利用预先培训的大型数据集预先培训的公开模型,我们的方法可以在不同的数据集中对具有相同模型的单通推断进行数据选择过程。为了捕获图像内的微妙本地信息,我们提出了从预先训练网络的中间特征中容易地提取的知识集群。而不是麻烦的批量选择策略,通过在细粒度知识集群级别执行K中心贪婪来选择所有数据样本。整个过程只需要单通式模型推论而不培训或监督,使我们的方法在时间复杂程度明显优于现有技术,从而长达数百次。广泛的实验越来越展示了我们对物体检测,语义分割,深度估计和图像分类方法的有希望的性能。
translated by 谷歌翻译
接受注释较弱的对象探测器是全面监督者的负担得起的替代方案。但是,它们之间仍然存在显着的性能差距。我们建议通过微调预先训练的弱监督检测器来缩小这一差距,并使用``Box-In-box''(bib'(bib)自动从训练集中自动选择了一些完全注销的样品,这是一种新颖的活跃学习专门针对弱势监督探测器的据可查的失败模式而设计的策略。 VOC07和可可基准的实验表明,围嘴表现优于其他活跃的学习技术,并显着改善了基本的弱监督探测器的性能,而每个类别仅几个完全宣布的图像。围嘴达到了完全监督的快速RCNN的97%,在VOC07上仅10%的全已通量图像。在可可(COCO)上,平均每类使用10张全面通量的图像,或同等的训练集的1%,还减少了弱监督检测器和完全监督的快速RCN之间的性能差距(In AP)以上超过70% ,在性能和数据效率之间表现出良好的权衡。我们的代码可在https://github.com/huyvvo/bib上公开获取。
translated by 谷歌翻译
这项工作的目的是使用零手动注释建立可扩展的管道,以将对象检测器扩展到新颖/看不见的类别。为此,我们做出以下四个贡献:(i)追求概括,我们提出了一个两阶段的开放式摄制对象检测器,其中类无形的对象建议与预先训练的视觉视觉训练的文本编码一起分类语言模型; (ii)要将视觉潜在空间(RPN框建议)与预训练的文本编码器配对,我们提出了区域提示的概念,以学习将文本嵌入空间与区域视觉对象特征相结合; (iii)为了扩展学习过程以检测更广泛的对象,我们通过新颖的自我训练框架利用可用的在线资源,该框架允许在嘈杂的未经图像的网络图像上训练所提出的检测器。最后,(iv)评估我们所提出的检测器,称为及时插图,我们对具有挑战性的LVI和MS-COCO数据集进行了广泛的实验。提示件表现出优于现有方法的卓越性能,而其他培训图像和零手动注释较少。带代码的项目页面:https://fcjian.github.io/promptdet。
translated by 谷歌翻译
开放世界对象检测是一个更具笼统和挑战性的目标,旨在识别和本地化由任意类别名称描述的对象。最近的工作GLIP通过将检测数据集的所有类别名称连接到句子中,从而将此问题作为接地问题,从而导致类别名称之间的效率低下的相互作用。本文介绍了Distclip,这是一种通过诉诸于设计概念词典的知识富集,是一种平行的视觉概念训练预训练方法,用于开放世界检测。为了提高学习效率,我们提出了一种新型的并行概念公式,该公式分别提取概念,以更好地利用异质数据集(即检测,接地和图像文本对)进行培训。我们进一步设计了来自各种在线资源和检测数据集的概念字典〜(带有描述),以提供每个概念的先验知识。通过用描述丰富这些概念,我们明确地建立了各种概念之间的关系,以促进开放域学习。所提出的概念词典进一步用于提供足够的负面概念,用于构建单词区域对齐损失\,并完成图像对文本对数据标题中缺少描述的对象的标签。所提出的框架显示出强烈的零射击性能性能,例如,在LVIS数据集上,我们的DETCLIP-T优于9.9%的地图GLIPT-T优于GLIP-T,并且与完全避免的型号相比,稀有类别的稀有类别提高了13.5%。作为我们的。
translated by 谷歌翻译
昂贵注释的要求是培训良好的实例细分模型的重大负担。在本文中,我们提出了一个经济活跃的学习环境,称为主动监督实例细分(API),该实例分段(API)从框级注释开始,并迭代地在盒子内划分一个点,并询问它是否属于对象。API的关键是找到最大程度地提高分段准确性的最佳点,以有限的注释预算。我们制定此设置,并提出几种基于不确定性的抽样策略。与其他学习策略相比,使用这些策略开发的模型可以在具有挑战性的MS-Coco数据集上获得一致的性能增长。结果表明,API集成了主动学习和基于点的监督的优势,是标签有效实例分割的有效学习范式。
translated by 谷歌翻译
对比语言 - 图像预训练(剪辑)在开放词汇零拍摄图像识别方面取得了显着突破。许多最近的研究利用预先训练的剪辑模型进行图像级分类和操纵。在本文中,我们进一步探索了剪辑的电位,用于像素级致密预测,具体地在语义分割中。在没有注释和微调的情况下,我们的方法Denseclip会产生合理的分段结果,在各种数据集中的开放概念上产生了合理的分段结果。通过添加伪标签和自我培训,Denseclip +超越了SOTA转换零点语义分割方法,通过大幅边缘,例如,Pascal VOC / Pascal Context / Coco Sift的宣传课程从35.6 / 20.7 / 30.3到86.1 / 66.7 / 54.7。我们还在输入损坏下测试了Denseclip的稳健性,并评估其在识别细粒度物体和新颖概念中的能力。我们的发现表明,Denseclip可以作为致密预测任务的新可靠的监督源,以实现无批准的分割。
translated by 谷歌翻译