为了消除水下环境中最佳路径的影响,本文提出了一种专为无人水下水下车辆(UUV)设计的智能算法。该算法由两个部分组成:一种基于神经网络的算法,该算法会扣除最短路径并避免所有可能的碰撞;以及通过洋流的影响带来的调整组件,平衡偏离偏差。提出的算法的优化结果详细介绍,并与不考虑电流效果的路径计划算法进行了比较。比较结果证明了遇到不同方向和速度的电流时路径计划方法的有效性。
translated by 谷歌翻译
无人管理的水下车辆(UUV)的运动计划和跟踪控制技术对于高效且强大的UUV导航至关重要,这对于水下救援,设施维护,海洋资源探索,水上娱乐等至关重要。控制范围一直在全球范围内迅速增长,通常将其分类为以下主题:多UUV系统的任务分配,UUV路径计划和UUV轨迹跟踪。本文提供了对传统和智能技术的全面审查,用于运动计划和跟踪UUV的控制。介绍了文献中这些各种方法的益处和缺点的分析。此外,为将来的研究提供了UV运动计划和跟踪控制的挑战和前景。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
在本文中,提出了一种基于知识的基于知识的遗传算法,用于在非结构化复杂环境中移动机器人的路径规划,其中提出了五个特定于问题的操作员以进行有效的机器人路径计划。提出的遗传算法将机器人路径计划的领域知识纳入其专业操作员,其中一些也结合了局部搜索技术。提出了一种独特而简单的表示,并开发了一种简单但有效的路径评估方法,可以准确检测到碰撞,并且机器人路径的质量得到很好的反映。所提出的算法能够在静态和动态复杂环境中找到近乎最佳的机器人路径。通过模拟研究证明了所提出算法的有效性和效率。通过比较研究证明了专业遗传算子在解决机器人路径计划问题的拟议遗传算法中的不可替代作用。
translated by 谷歌翻译
自主驾驶的车辆必须能够以无碰撞的方式在动态和不可预测的环境中导航。到目前为止,这仅是在无人驾驶汽车和仓库装置中部分实现的,在该装置中,诸如道路,车道和交通标志之类的标记结构简化了运动计划和避免碰撞问题。我们正在为类似汽车的车辆提供一种新的控制方法,该方法基于前所未有的快节奏A*实现,该方法允许控制周期以30 Hz的频率运行。这个频率使我们能够将A*算法作为低级重型控制器,非常适合在几乎任何动态环境中导航和避免碰撞。由于有效的启发式方法由沿着目标最短路径铺设的旋转 - 翻译 - 旋转运动运动,因此我们的短期流产A*(staa*)会快速收敛,并可以尽早中止,以确保高而稳定的控制速度。尽管我们的staa*沿着最短路径扩展状态,但它会照顾与环境的碰撞检查,包括预测的移动障碍状态,并返回计算时间用完时找到的最佳解决方案。尽管计算时间有限,但由于最短路径的以下路径,我们的staa*并未被困在拐角处。在模拟和实体机器人实验中,我们证明了我们的控制方法几乎完全消除了碰撞,并且具有改进的动态窗口方法的改进版本,并具有预测性的避免功能。
translated by 谷歌翻译
科学界能够为实践问题提供一套新的解决方案,这些解决方案由于神经网络体系结构的进步而在效率和计算速度方面显着改善了现代技术的性能。考虑到机器人路径计划中神经网络的利用,我们介绍了最新作品。我们的调查显示了考虑不同输入,输出和环境的问题的不同公式之间的对比,以及不同的神经网络架构如何为所有提出的问题提供解决方案。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
在复杂的动态环境中,有效的轨迹产生在无人体表面车辆(USV)域中仍然是一个开放的问题。在本文中,提出了针对USV-UAV系统的合作轨迹计划算法,以确保USV可以在多障碍物图中的自主进步过程中执行安全,平稳的路径。具体而言,无人机(UAV)扮演飞行传感器的角色,并提供了实时的全球地图和障碍信息,并具有轻巧的语义细分网络和3D投影转换。然后通过基于图的搜索方法生成初始的避免轨迹。关于USV的独特运动不足的运动学特性,引入了基于船体动态约束的数值优化方法,以使该轨迹易于跟踪进行运动控制。最后,提出了基于在执行过程中具有最低能量消耗限制的NMPC的运动控制方法。实验结果验证了整个系统的有效性,并且生成的轨迹在局部对USV始终具有相当大的跟踪精度。
translated by 谷歌翻译
自主无人驾驶飞行器(无人机)的重要能力是自动降落,同时避免在该过程中碰撞障碍。这种能力需要实时局部轨迹规划。虽然已经引入了轨迹规划方法,但在紧急登陆等案件中,它们尚未在现实生活场景中进行评估,其中只能感测和检测到障碍物表面。我们使用预先计划的全局路径和着陆区域的优先级地图提出了一种新颖的优化框架。在包括3D城市环境,基于LIDAR的障碍 - 表面感应和UAV指导和动态的模拟器中实施和评估了多个轨迹规划算法。我们表明,使用我们所提出的优化标准可以成功提高着陆关联成功概率,同时避免实时与障碍物的碰撞。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
本文介绍了一种多模式运动计划(MMP)算法,该算法结合了三维(3-D)路径计划和DWA障碍避免算法。该算法旨在计划复杂的非结构化场景中超越障碍物的机器人的路径和运动。提出了一种新颖的A-Star算法来结合非结构化场景的特征,并将其切换为贪婪的最佳优先策略算法的策略。同时,路径计划的算法与DWA算法集成在一起,因此机器人可以在沿着全球计划的路径运动过程中执行局部动态障碍。此外,当提议的全球路径计划算法与局部障碍算法结合使用时,机器人可以在避免障碍物和克服障碍物后纠正道路。具有几个复杂环境的工厂中的仿真实验验证了算法的可行性和鲁棒性。该算法可以迅速为超越障碍物的机器人生成合理的3D路径,并在考虑场景和运动障碍物的特征的前提下进行可靠的当地障碍。
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
我们提出了一种具有动态障碍的生物学启发方法,以避免动态障碍。路径计划是在自组织神经网络(SONN)产生的机器人的凝结配置空间中进行的。机器人本身和静态障碍物以及动态障碍物通过笛卡尔任务空间映射到构造空间,并通过预报的运动学绘制到配置空间。冷凝空间代表了环境的认知图,该图是受位置细胞和哺乳动物大脑认知图的概念的启发。培训数据的产生以及评估是在伴随模拟的实际工业机器人上进行的。为了评估不断变化的环境中无动碰撞在线计划,实现了演示者。然后,对基于样本的计划者进行了比较研究。因此,我们可以证明该机器人能够在动态变化的环境中运行,并在印象0.02秒内重新计划其运动轨迹,从而证明我们概念的实时能力。
translated by 谷歌翻译
覆盖路径计划(CPP)旨在找到覆盖整个给定空间的最佳路径。由于NP坚硬的性质,CPP仍然是一个具有挑战性的问题。生物启发的算法(例如蚂蚁菌落优化(ACO))已被利用以解决该问题,因为它们可以利用启发式信息来缓解路径计划的复杂性。本文提出了快速跨度的蚂蚁菌落优化(Fasaco),蚂蚁可以在其中以各种速度探索环境。通过这样做,速度较高的蚂蚁可以更快地找到目的地或障碍物,并通过通过路径上的信息素步道传达此类信息来保持较低的速度蚂蚁。该机制可确保在减少总体路径计划时间时发现(子)〜最佳路径。实验结果表明,在CPU时间方面,Fasaco的效率比ACO高19.3-32.3 \%$,重新包含$ 6.9-12.5 \%$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。这使得Fasaco在实时和能源有限的应用中吸引人。
translated by 谷歌翻译
在本文中,我们为非结构化的户外环境提供了一个完整的自主导航管道。这项工作的主要贡献位于路径规划模块上,我们分为两个主要类别:全局路径规划(GPP)和本地路径规划(LPP)。对于环境表示,而不是复杂和重型网格图,GPP层使用直接从OpenStreetMaps(OSM)获得的道路网络信息。在LPP层中,我们使用新颖的天真谷路(NVP)方法来生成局部路径,避免实时障碍物。这种方法使用LIDAR传感器使用本地环境的天真表示。此外,它使用了一个天真的优化,用于利用成本图中的“谷”区域的概念。我们在研究平台蓝色实验上实验展示了该系统的稳健性,在阿利坎特大学科学园区自主驾驶超过20公里,在12.33公顷地区。
translated by 谷歌翻译
如果我们给机器人将对象从其当前位置移至未知环境中的另一个位置的任务,则机器人必须探索地图,确定所有类型的障碍物,然后确定完成任务的最佳途径。我们提出了一个数学模型,以找到一个最佳的路径计划,以避免与所有静态和移动障碍物发生冲突,并具有最小的完成时间和最小距离。在此模型中,不考虑障碍物和机器人周围的边界框,因此机器人可以在不与它们相撞的情况下非常接近障碍物移动。我们考虑了两种类型的障碍:确定性,其中包括所有静态障碍,例如不移动的墙壁以及所有动作具有固定模式和非确定性的移动障碍,其中包括所有障碍物,其运动都可以在任何方向上发生任何方向发生概率分布随时。我们还考虑了机器人的加速和减速,以改善避免碰撞的速度。
translated by 谷歌翻译
最近无人驾驶飞行器(UAV)已广泛部署在各种真实的场景,如灾难救援和包裹交付。这些工作环境中的许多都是不确定和动态障碍的非结构化。保持UAV碰撞经常发生。非常希望具有高灵敏度的无人机,以调整其用于适应这些环境动态的动作。但是,无人机敏捷性受其电池电量输出的限制;特别是,UAV的电力系统不能知道其在运动规划中的实际功率需求,而需要随着环境和UAV条件而动态变化。在运动规划中,难以准确地对准电源需求的电源。这种不匹配会导致无人机的电源不足,并导致延迟运动调整,在很大程度上增加了障碍物的碰撞风险,因此破坏了无人机敏捷性。为提高无人机敏捷性,开发了一种新颖的智能电源解决方案,敏捷增强电源(AEPS),以主动准备适当的电量,以支持具有增强敏捷性的运动规划。该方法在物理电力系统和UAV规划之间构建了一座桥梁。凭借敏捷增强的运动规划,将提高复杂工作环境中的UAV的安全性。为了评估AEPS有效性,采用了“社区安全巡逻任务”的任务,采用了意外障碍;通过燃料电池,电池和电容器的混合集成来实现电源。通过成功和及时的电源,提高任务成功率和系统安全性,验证了AEP在提高无人机敏捷性方面的有效性,提高了任务持续时间。
translated by 谷歌翻译
在本文中,我们为全向机器人提供了一种积极的视觉血液。目标是生成允许这样的机器人同时定向机器人的控制命令并将未知环境映射到最大化的信息量和消耗尽可能低的信息。利用机器人的独立翻译和旋转控制,我们引入了一种用于活动V-SLAM的多层方法。顶层决定提供信息丰富的目标位置,并为它们产生高度信息的路径。第二个和第三层积极地重新计划并执行路径,利用连续更新的地图和本地特征信息。此外,我们介绍了两个实用程序配方,以解释视野和机器人位置的障碍物。通过严格的模拟,真正的机器人实验和与最先进的方法的比较,我们证明我们的方法通过较小的整体地图熵实现了类似的覆盖结果。这是可以获得的,同时保持横向距离比其他方法短至39%,而不增加车轮的总旋转量。代码和实现详细信息作为开源提供。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
近年来,无人驾驶汽车(UAV)用于众多检查和视频捕获任务。但是,在障碍附近手动控制无人机是具有挑战性的,并且构成了高风险。即使对于自动飞行,全球导航计划也可能太慢,无法应对新感知的障碍。诸如风之类的干扰可能会导致与计划中的轨迹偏离。在这项工作中,我们提出了一种快速的预测障碍方法,该方法不取决于更高级别的本地化或映射,并保持无人机的动态飞行功能。它直接在LIDAR范围内实时运行,并通过计算范围图像内的角电位字段来调整当前飞行方向。随后根据轨迹预测和接触时间估计来确定速度幅度。使用硬件式模拟评估我们的方法。它可以使无人机保持安全距离,同时允许比以前直接在传感器数据上运行的反应性障碍物方法更高的飞行速度。
translated by 谷歌翻译