Blackbox对抗攻击可以分为基于转移和基于查询的攻击。转移方法不需要受害模型的任何反馈,而是与基于查询的方法相比提供较低的成功率。查询攻击通常需要大量的成功查询。为了达到两种方法,最近的努力都试图将它们结合起来,但仍需要数百个查询才能获得高成功率(尤其是针对目标攻击)。在本文中,我们提出了一种通过替代集合搜索(基地)进行黑框攻击的新方法,该方法可以使用极少量的查询来生成非常成功的黑盒攻击。我们首先定义了扰动机,该机器通过在固定的替代模型上最小化加权损失函数来生成扰动的图像。为了为给定受害者模型生成攻击,我们使用扰动机产生的查询搜索损失函数中的权重。由于搜索空间的尺寸很小(与替代模型的数量相同),因此搜索需要少量查询。我们证明,与经过Imagenet训练的不同图像分类器(包括VGG-19,Densenet-121和Resnext-50)上的最新图像分类器相比,我们提出的方法的查询至少少了30倍,其查询至少少了30倍。特别是,我们的方法平均需要每张图像3个查询,以实现目标攻击的成功率超过90%,而对于非目标攻击的成功率超过99%,每个图像的1-2查询。我们的方法对Google Cloud Vision API也有效,并获得了91%的非目标攻击成功率,每张图像2.9查询。我们还表明,我们提出的方法生成的扰动是高度转移的,可以用于硬标签黑盒攻击。
translated by 谷歌翻译
近年来,图像分类器的BlackBox传输攻击已被广泛研究。相比之下,对对象探测器的转移攻击取得了很小的进展。对象探测器采用图像的整体视图,并检测一个对象(或缺乏)通常取决于场景中的其他对象。这使得这种探测器本质上的上下文感知和对抗的攻击比目标图像分类器更具挑战性。在本文中,我们提出了一种新的方法来为对象检测器生成上下文感知攻击。我们表明,通过使用对象及其相关位置的共同发生和尺寸作为上下文信息,我们可以成功地生成目标的错误分类攻击,该攻击比最先进的Blackbox对象探测器上实现更高的转移成功率。我们在帕斯卡VOC和MS Coco Datasets的各种对象探测器上测试我们的方法,与其他最先进的方法相比,性能提高了高达20美元的百分点。
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
We propose the Square Attack, a score-based black-box l2and l∞-adversarial attack that does not rely on local gradient information and thus is not affected by gradient masking. Square Attack is based on a randomized search scheme which selects localized squareshaped updates at random positions so that at each iteration the perturbation is situated approximately at the boundary of the feasible set. Our method is significantly more query efficient and achieves a higher success rate compared to the state-of-the-art methods, especially in the untargeted setting. In particular, on ImageNet we improve the average query efficiency in the untargeted setting for various deep networks by a factor of at least 1.8 and up to 3 compared to the recent state-ofthe-art l∞-attack of Al-Dujaili & OReilly (2020). Moreover, although our attack is black-box, it can also outperform gradient-based white-box attacks on the standard benchmarks achieving a new state-of-the-art in terms of the success rate. The code of our attack is available at https://github.com/max-andr/square-attack.
translated by 谷歌翻译
转移对抗性攻击是一种非普通的黑匣子逆势攻击,旨在对替代模型进行对抗的对抗扰动,然后对受害者模型应用这种扰动。然而,来自现有方法的扰动的可转移性仍然有限,因为对逆势扰动易于用单个替代模型和特定数据模式容易接收。在本文中,我们建议学习学习可转让的攻击(LLTA)方法,这使得对逆势扰动更广泛地通过学习数据和模型增强。对于数据增强,我们采用简单的随机调整大小和填充。对于模型增强,我们随机更改后部传播而不是前向传播,以消除对模型预测的影响。通过将特定数据和修改模型作为任务的攻击处理,我们预计对抗扰动采用足够的任务来普遍。为此,在扰动生成的迭代期间进一步引入了元学习算法。基础使用的数据集上的经验结果证明了我们的攻击方法的有效性,与最先进的方法相比,转移攻击的成功率较高的12.85%。我们还评估我们在真实世界在线系统上的方法,即Google Cloud Vision API,进一步展示了我们方法的实际潜力。
translated by 谷歌翻译
制作对抗性攻击的大多数方法都集中在具有单个主体对象的场景上(例如,来自Imagenet的图像)。另一方面,自然场景包括多个在语义上相关的主要对象。因此,探索设计攻击策略至关重要,这些攻击策略超出了在单对象场景上学习或攻击单对象受害者分类器。由于其固有的属性将扰动向未知模型的强大可传递性强,因此本文介绍了使用生成模型对多对象场景的对抗性攻击的第一种方法。为了代表输入场景中不同对象之间的关系,我们利用开源的预训练的视觉语言模型剪辑(对比语言图像 - 预训练),并动机利用语言中的编码语义来利用编码的语义空间与视觉空间一起。我们称这种攻击方法生成对抗性多对象场景攻击(GAMA)。 GAMA展示了剪辑模型作为攻击者的工具的实用性,以训练可强大的扰动发电机为多对象场景。使用联合图像文本功能来训练发电机,我们表明GAMA可以在各种攻击环境中制作有效的可转移扰动,以欺骗受害者分类器。例如,GAMA触发的错误分类比在黑框设置中的最新生成方法高出约16%,在黑框设置中,分类器体系结构和攻击者的数据分布都与受害者不同。我们的代码将很快公开提供。
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
已知用于图像分类的深神经网络(DNN)容易受到对抗性例子的影响。而且,对抗性示例具有可转移性,这意味着DNN模型的对抗示例可以欺骗其他具有非平凡概率的黑框模型。这给出了基于转移的对抗攻击,其中使用了预验证或已知模型(称为替代模型)产生的对抗示例来进行黑盒攻击。关于如何从给定的替代模型中生成对抗性示例以实现更好的可传递性,有一些工作。但是,训练一种特殊的替代模型以生成具有更好可传递性的对抗性示例的情况相对较小的探索。在本文中,我们提出了一种培训具有丰富黑暗知识的替代模型的方法,以提高替代模型产生的对抗性示例的对抗性转移性。该训练有素的替代模型被命名为“黑暗代理模型”(DSM),培训DSM的建议方法由两个关键组成部分组成:一种教师模型提取黑暗知识并提供软标签,以及增强的混合增强技能,增强了训练数据的黑暗知识。已经进行了广泛的实验,以表明所提出的方法可以基本上改善替代模型的不同体系结构和优化者的替代模型的对抗性转移性,以生成对抗性示例。我们还表明,所提出的方法可以应用于包含黑暗知识(例如面部验证)的基于转移攻击的其他情况。
translated by 谷歌翻译
现有的转移攻击方法通常假定攻击者知道黑盒受害者模型的训练集(例如标签集,输入大小),这通常是不现实的,因为在某些情况下,攻击者不知道此信息。在本文中,我们定义了一个通用的可转移攻击(GTA)问题,在该问题中,攻击者不知道此信息,并获得攻击可能来自未知数据集的任何随机遇到的图像。为了解决GTA问题,我们提出了一种新颖的图像分类橡皮擦(ICE),该图像分类(ICE)训练特定的攻击者从任意数据集中擦除任何图像的分类信息。几个数据集的实验表明,ICE在GTA上的现有转移攻击极大地胜过了转移攻击,并表明ICE使用类似纹理的噪声来扰动不同数据集的不同图像。此外,快速傅立叶变换分析表明,每个冰噪声中的主要成分是R,G和B图像通道的三个正弦波。受这个有趣的发现的启发,我们设计了一种新颖的正弦攻击方法(SA),以优化三个正弦波。实验表明,SA的性能与冰相当,表明这三个正弦波是有效的,足以打破GTA设置下的DNN。
translated by 谷歌翻译
微调可能容易受到对抗攻击的影响。现有有关对微调模型(BAFT)的黑盒攻击的作品受到强有力的假设的限制。为了填补空白,我们提出了两个新型的BAFT设置,即跨域和跨域交叉结构BAFT,这仅假设(1)攻击的目标模型是微调模型,以及(2)源域数据是已知和可访问的。为了成功攻击两种设置下的微调模型,我们建议先训练针对源模型的对抗发电机,该模型采用编码器架构体系结构并将干净的输入映射到对抗性示例。然后,我们在对抗发电机的编码器产生的低维潜在空间中搜索。搜索是根据从源模型获得的替代梯度的指导进行的。对不同域和不同网络体系结构的实验结果表明,提出的攻击方法可以有效,有效地攻击微调模型。
translated by 谷歌翻译
Designing powerful adversarial attacks is of paramount importance for the evaluation of $\ell_p$-bounded adversarial defenses. Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries. The search space of PGD is dictated by the steepest ascent directions of an objective. Despite the plethora of objective function choices, there is no universally superior option and robustness overestimation may arise from ill-suited objective selection. Driven by this observation, we postulate that the combination of different objectives through a simple loss alternating scheme renders PGD more robust towards design choices. We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $\ell_{\infty}$-robust models and 3 datasets. The performance improvement is consistent, when compared to the single loss counterparts. In the CIFAR-10 dataset, our strongest adversarial attack outperforms all of the white-box components of AutoAttack (AA) ensemble, as well as the most powerful attacks existing on the literature, achieving state-of-the-art results in the computational budget of our study ($T=100$, no restarts).
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
评估对抗性鲁棒性的量,以找到有输入样品被错误分类所需的最小扰动。底层优化的固有复杂性需要仔细调整基于梯度的攻击,初始化,并且可能为许多计算苛刻的迭代而被执行,即使专门用于给定的扰动模型也是如此。在这项工作中,我们通过提出使用不同$ \ ell_p $ -norm扰动模型($ p = 0,1,2,\ idty $)的快速最小规范(FMN)攻击来克服这些限制(FMN)攻击选择,不需要对抗性起点,并在很少的轻量级步骤中收敛。它通过迭代地发现在$ \ ell_p $ -norm的最大信心被错误分类的样本进行了尺寸的尺寸$ \ epsilon $的限制,同时适应$ \ epsilon $,以最小化当前样本到决策边界的距离。广泛的实验表明,FMN在收敛速度和计算时间方面显着优于现有的攻击,同时报告可比或甚至更小的扰动尺寸。
translated by 谷歌翻译
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs.Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to * Pin-Yu Chen and Huan Zhang contribute equally to this work.
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial examples, which poses security concerns on these algorithms due to the potentially severe consequences. Adversarial attacks serve as an important surrogate to evaluate the robustness of deep learning models before they are deployed. However, most of existing adversarial attacks can only fool a black-box model with a low success rate. To address this issue, we propose a broad class of momentum-based iterative algorithms to boost adversarial attacks. By integrating the momentum term into the iterative process for attacks, our methods can stabilize update directions and escape from poor local maxima during the iterations, resulting in more transferable adversarial examples. To further improve the success rates for black-box attacks, we apply momentum iterative algorithms to an ensemble of models, and show that the adversarially trained models with a strong defense ability are also vulnerable to our black-box attacks. We hope that the proposed methods will serve as a benchmark for evaluating the robustness of various deep models and defense methods. With this method, we won the first places in NIPS 2017 Non-targeted Adversarial Attack and Targeted Adversarial Attack competitions.
translated by 谷歌翻译
对图像分类器的最新基于模型的攻击压倒性地集中在单对象(即单个主体对象)图像上。与此类设置不同,我们解决了一个更实用的问题,即使用多对象(即多个主导对象)图像生成对抗性扰动,因为它们代表了大多数真实世界场景。我们的目标是设计一种攻击策略,该策略可以通过利用此类图像中固有的本地贴片差异来从此类自然场景中学习(例如,对象上的局部贴片在“人”上的局部贴片与在交通场景中的对象`自行车'之间的差异)。我们的关键想法是:为了误解对抗性的多对象图像,图像中的每个本地贴片都会使受害者分类器感到困惑。基于此,我们提出了一种新颖的生成攻击(称为局部斑块差异或LPD攻击),其中新颖的对比损失函数使用上述多对象场景特征空间的局部差异来优化扰动生成器。通过各种受害者卷积神经网络的各种实验,我们表明我们的方法在不同的白色盒子和黑色盒子设置下进行评估时,我们的方法优于基线生成攻击,具有高度可转移的扰动。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
深度学习的进步使得广泛的有希望的应用程序。然而,这些系统容易受到对抗机器学习(AML)攻击的影响;对他们的意见的离前事实制作的扰动可能导致他们错误分类。若干最先进的对抗性攻击已经证明他们可以可靠地欺骗分类器,使这些攻击成为一个重大威胁。对抗性攻击生成算法主要侧重于创建成功的例子,同时控制噪声幅度和分布,使检测更加困难。这些攻击的潜在假设是脱机产生的对抗噪声,使其执行时间是次要考虑因素。然而,最近,攻击者机会自由地产生对抗性示例的立即对抗攻击已经可能。本文介绍了一个新问题:我们如何在实时约束下产生对抗性噪音,以支持这种实时对抗攻击?了解这一问题提高了我们对这些攻击对实时系统构成的威胁的理解,并为未来防御提供安全评估基准。因此,我们首先进行对抗生成算法的运行时间分析。普遍攻击脱机产生一般攻击,没有在线开销,并且可以应用于任何输入;然而,由于其一般性,他们的成功率是有限的。相比之下,在特定输入上工作的在线算法是计算昂贵的,使它们不适合在时间约束下的操作。因此,我们提出房间,一种新型实时在线脱机攻击施工模型,其中离线组件用于预热在线算法,使得可以在时间限制下产生高度成功的攻击。
translated by 谷歌翻译
机器学习模型严重易于来自对抗性示例的逃避攻击。通常,对逆势示例的修改输入类似于原始输入的修改输入,在WhiteBox设置下由对手的WhiteBox设置构成,完全访问模型。然而,最近的攻击已经显示出使用BlackBox攻击的对逆势示例的查询号显着减少。特别是,警报是从越来越多的机器学习提供的经过培训的模型的访问界面中利用分类决定作为包括Google,Microsoft,IBM的服务提供商,并由包含这些模型的多种应用程序使用的服务提供商来利用培训的模型。对手仅利用来自模型的预测标签的能力被区别为基于决策的攻击。在我们的研究中,我们首先深入潜入最近的ICLR和SP的最先进的决策攻击,以突出发现低失真对抗采用梯度估计方法的昂贵性质。我们开发了一种强大的查询高效攻击,能够避免在梯度估计方法中看到的嘈杂渐变中的局部最小和误导中的截留。我们提出的攻击方法,ramboattack利用随机块坐标下降的概念来探索隐藏的分类器歧管,针对扰动来操纵局部输入功能以解决梯度估计方法的问题。重要的是,ramboattack对对对手和目标类别可用的不同样本输入更加强大。总的来说,对于给定的目标类,ramboattack被证明在实现给定查询预算的较低失真时更加强大。我们使用大规模的高分辨率ImageNet数据集来策划我们的广泛结果,并在GitHub上开源我们的攻击,测试样本和伪影。
translated by 谷歌翻译