优化逻辑合成期间电路的结果质量(QOR)是一种强大的挑战,需要探索指数大小的搜索空间。虽然专业设计的操作辅助揭示有效序列,但逻辑电路的复杂性的增加有利于自动化程序。灵感来自机器学习的成功,研究人员适应了逻辑合成应用的深度学习和加固学习。然而,成功的是,这些技术遭受了预防广泛采用的高样本复杂性。为了实现高效且可扩展的解决方案,我们提出沸腾,这是一种适应现代贝叶斯优化的第一算法,以导航合成操作的空间。沸腾不需要人类干预,并通过新颖的高斯工艺内核和信托区域约束收购有效地进行探索与利用。在EPFL基准测试的一组实验中,根据样本效率和QOR值,我们展示了与最先进的卓越的性能。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
寻找可调谐GPU内核的最佳参数配置是一种非普通的搜索空间练习,即使在自动化时也是如此。这在非凸搜索空间上造成了优化任务,使用昂贵的来评估具有未知衍生的函数。这些特征为贝叶斯优化做好了良好的候选人,以前尚未应用于这个问题。然而,贝叶斯优化对这个问题的应用是具有挑战性的。我们演示如何处理粗略的,离散的受限搜索空间,包含无效配置。我们介绍了一种新颖的上下文方差探索因子,以及具有改进的可扩展性的新采集功能,与知识的采集功能选择机制相结合。通过比较我们贝叶斯优化实现对各种测试用例的性能,以及核心调谐器中的现有搜索策略以及其他贝叶斯优化实现,我们证明我们的搜索策略概括了良好的良好,并始终如一地以广泛的保证金更优于其他搜索策略。
translated by 谷歌翻译
强化学习(RL)旨在通过与环境的互动来找到最佳政策。因此,学习复杂行为需要大量的样本,这在实践中可能是持久的。然而,而不是系统地推理和积极选择信息样本,用于本地搜索的政策梯度通常从随机扰动获得。这些随机样品产生高方差估计,因此在样本复杂性方面是次优。积极选择内容性样本是贝叶斯优化的核心,它构成了过去样本的目标的概率替代物,以推理信息的后来的随后。在本文中,我们建议加入两个世界。我们利用目标函数的概率模型及其梯度开发算法。基于该模型,该算法决定查询嘈杂的零顺序oracle以提高梯度估计。生成的算法是一种新型策略搜索方法,我们与现有的黑盒算法进行比较。比较揭示了改进的样本复杂性和对合成目标的广泛实证评估的差异降低。此外,我们突出了主动抽样对流行的RL基准测试的好处。
translated by 谷歌翻译
我们考虑使用昂贵的黑盒功能评估优化组合空间(例如,序列,树木和图形)的问题。例如,使用物理实验室实验优化用于药物设计的分子。贝叶斯优化(BO)是一种有效的框架,可以通过智能地选择由学习的代理模型引导的高实用程序的输入来解决这些问题。最近用于组合空间的BO方法是通过使用深生成模型(DGMS)学习结构的潜在表示来减少到连续空间。从连续空间的所选输入被解码为用于执行功能评估的离散结构。然而,潜在空间上的代理模型仅使用DGM学习的信息,这可能不具有所需的感应偏压来近似于目标黑盒功能。为了克服这篇缺点,本文提出了一种原则方法,称为梯子。关键的想法是定义一种新颖的结构耦合内核,该内核明确地将结构信息与解码结构与学习的潜空间表示进行了解,以获得更好的代理建模。我们对现实世界基准测试的实验表明,梯子显着改善了纬度的潜伏空间方法,并表现出更好或更好地与最先进的方法。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译
我们考虑使用昂贵的功能评估(也称为实验)的黑匣子多目标优化(MOO)的问题,其中目标是通过最小化实验的总资源成本来近似真正的帕累托解决方案。例如,在硬件设计优化中,我们需要使用昂贵的计算模拟找到权衡性能,能量和面积开销的设计。关键挑战是选择使用最小资源揭示高质量解决方案的实验顺序。在本文中,我们提出了一种基于输出空间熵(OSE)搜索原理来解决MOO问题的一般框架:选择最大化每单位资源成本的信息的实验,这是真正的帕累托前线所获得的信息。我们适当地实例化了OSE搜索的原理,以导出以下四个Moo问题设置的高效算法:1)最基本的EM单一保真设置,实验昂贵且准确; 2)处理EM黑匣子约束}在不执行实验的情况下无法进行评估; 3)离散的多保真设置,实验可以在消耗的资源量和评估准确度时变化; 4)EM连续保真设置,其中连续函数近似导致巨大的实验空间。不同综合和现实世界基准测试的实验表明,基于OSE搜索的算法在既有计算效率和MOO解决方案的准确性方面改进了最先进的方法。
translated by 谷歌翻译
贝叶斯优化(BO)方法试图找到目标功能的全球最佳功能,这些功能仅作为黑盒或昂贵的评估。这样的方法为目标函数构建了替代模型,从而量化了通过贝叶斯推论的替代物中的不确定性。客观评估是通过在每个步骤中最大化采集函数来依次确定的。但是,由于采集函数的非转换性,尤其是在批处理贝叶斯优化的情况下,该辅助优化问题可能是高度不平凡的,因此可以解决。在这项工作中,我们将批处理重新定义为在概率措施空间上的优化问题。我们基于多点预期改进来构建一个新的采集函数,该功能是概率度量空间的凸面。解决此“内部”优化问题的实用方案自然会作为该目标函数的梯度流。我们证明了这种新方法对不同基准函数的功效,并与最先进的批次BO方法进行了比较。
translated by 谷歌翻译
贝叶斯优化(BO)被广泛用于优化随机黑匣子功能。尽管大多数BO方法都集中在优化条件期望上,但许多应用程序都需要规避风险的策略,并且需要考虑分配尾巴的替代标准。在本文中,我们提出了针对贝叶斯分位数和预期回归的新变异模型,这些模型非常适合异形的噪声设置。我们的模型分别由有条件分位数(或期望)的两个潜在高斯过程和不对称可能性函数的比例参数组成。此外,我们提出了基于最大值熵搜索和汤普森采样的两种BO策略,这些策略是针对此类型号量身定制的,可以容纳大量点。与现有的BO进行规避风险优化的方法相反,我们的策略可以直接针对分位数和预期进行优化,而无需复制观测值或假设噪声的参数形式。如实验部分所示,所提出的方法清楚地表现出异质的非高斯案例中的最新状态。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
优化昂贵以评估黑盒功能在包含D对象的所有排列中的输入空间是许多真实应用的重要问题。例如,在硬件设计中放置功能块以通过仿真优化性能。总体目标是最小化函数评估的数量,以找到高性能的排列。使用贝叶斯优化(BO)框架解决这个问题的关键挑战是折衷统计模型的复杂性和采集功能优化的途径。在本文中,我们提出并评估了博的两个算法(BOPS)。首先,BOPS-T采用高斯工艺(GP)代理模型与KENDALL内核和基于Thompson采样的Trocable采集功能优化方法,以选择评估的排列顺序。其次,BOPS-H采用GP代理模型与锦葵内核和启发式搜索方法,以优化预期的改进采集功能。理论上,从理论上分析BOPS-T的性能,以表明他们的遗憾增加了亚线性。我们对多种综合和现实世界基准测试的实验表明,BOPS-T和BOPS-H均优于组合空间的最先进的BO算法。为了推动未来的对这个重要问题的研究,我们为社区提供了新的资源和现实世界基准。
translated by 谷歌翻译
Bayesian Optimization(BO)是全球优化的黑匣子客观功能的方法,这是昂贵的评估。 Bo Powered实验设计在材料科学,化学,实验物理,药物开发等方面发现了广泛的应用。这项工作旨在提请注意应用BO在设计实验中的益处,并提供博手册,涵盖方法和软件,为了方便任何想要申请或学习博的人。特别是,我们简要解释了BO技术,审查BO中的所有应用程序在添加剂制造中,比较和举例说明不同开放BO库的功能,解锁BO的新潜在应用,以外的数据(例如,优先输出)。本文针对读者,了解贝叶斯方法的一些理解,但不一定符合添加剂制造的知识;软件性能概述和实施说明是任何实验设计从业者的乐器。此外,我们在添加剂制造领域的审查突出了博的目前的知识和技术趋势。本文在线拥有补充材料。
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
神经结构中的标准范例(NAS)是搜索具有特定操作和连接的完全确定性体系结构。在这项工作中,我们建议寻找最佳运行分布,从而提供了一种随机和近似解,可用于采样任意长度的架构。我们提出并显示,给定架构单元格,其性能主要取决于使用的操作的比率,而不是典型的搜索空间中的任何特定连接模式;也就是说,操作排序的小变化通常是无关紧要的。这种直觉与任何特定的搜索策略都具有正交,并且可以应用于多样化的NAS算法。通过对4数据集和4个NAS技术的广泛验证(贝叶斯优化,可分辨率搜索,本地搜索和随机搜索),我们表明操作分布(1)保持足够的辨别力来可靠地识别解决方案,并且(2)显着识别比传统的编码更容易优化,导致大量速度,几乎没有成本性能。实际上,这种简单的直觉显着降低了电流方法的成本,并可能使NAS用于更广泛的应用中。
translated by 谷歌翻译
宏位置是将内存块放在芯片画布上的问题。它可以在序列对上表达为组合优化问题,该表示形式描述了宏的相对位置。解决此问题尤其具有挑战性,因为目标功能评估昂贵。在本文中,我们通过序列对使用贝叶斯优化(BO)开发了一种新颖的方法来宏观放置。 BO是一种机器学习技术,它使用概率的替代模型和一个采集功能,可以平衡探索和开发以有效地优化黑盒目标函数。 BO比强化学习更有效率,因此可以与更现实的目标一起使用。此外,从数据中学习并将算法适应目标函数的能力使BO成为其他黑盒优化方法(例如模拟退火)的吸引人替代方法,该方法依赖于问题依赖性的启发式方法和参数调整。我们在固定外线宏观位置问题上基准了我们的算法,并具有半二级线长度目标,并表现出竞争性能。
translated by 谷歌翻译
我们考虑基于活动的运输模拟器的校准和不确定性分析问题。基于活动的模型(ABM)依靠单个旅行者行为的统计模型来预测大都市地区的高阶旅行模式。输入参数通常是使用最大似然从旅行者调查中估算的。我们开发了一种使用高斯工艺模拟器使用流量流数据校准这些参数的方法。我们的方法扩展了传统的模拟器,以处理运输模拟器的高维和非平稳性。我们介绍了一个深度学习维度降低模型,该模型与高斯工艺模型共同估计以近似模拟器。我们使用几个模拟示例以及校准伊利诺伊州布卢明顿的关键参数来证明方法。
translated by 谷歌翻译
由于其样本效率,贝叶斯优化(BO)已成为处理昂贵的黑匣子优化问题的流行方法,如Quand参数优化(HPO)。最近的实证实验表明,HPO问题的损失景观往往比以前假设的良好良好,即,在最佳的单模和凸起的情况下,如果它可以专注于那些有前途的当地地区,BO框架可能会更有效。在本文中,我们提出了船舶,这是一种双阶段方法,它针对中型配置空间量身定制,因为许多HPO问题中的一个遇到。在第一阶段,我们建立一个可扩展的全球代理模型,随机森林来描述整体景观结构。此外,我们通过上级树结构上的自下而上的方法选择有希望的次区域。在第二阶段,利用该子区域中的本地模型来建议接下来进行评估。实证实验表明,鲍威能够利用典型的HPO问题的结构,并特别吻合来自合成功能和HPO的中型问题。
translated by 谷歌翻译
尽管自动超参数优化(HPO)的所有好处,但大多数现代的HPO算法本身都是黑盒子。这使得很难理解导致所选配置,减少对HPO的信任,从而阻碍其广泛采用的决策过程。在这里,我们研究了HPO与可解释的机器学习(IML)方法(例如部分依赖图)的组合。但是,如果将这种方法天真地应用于HPO过程的实验数据,则优化器的潜在采样偏差会扭曲解释。我们提出了一种修改的HPO方法,该方法有效地平衡了对全局最佳W.R.T.的搜索。预测性能以及通过耦合贝叶斯优化和贝叶斯算法执行的基础黑框函数的IML解释的可靠估计。在神经网络的合成目标和HPO的基准情况下,我们证明我们的方法返回对基础黑盒的更可靠的解释,而不会损失优化性能。
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。从理论上讲,我们与预先训练的先验表示对BO的遗憾。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译