人类决策受到许多系统错误的困扰。可以通过提供决策辅助工具来指导决策者参与重要信息并根据理性决策策略将其集成,从而避免使用这些错误。设计这样的决策辅助工具曾经是一个乏味的手动过程。认知科学的进步可能会使将来自动化这一过程。我们最近引入了机器学习方法,以自动发现人类决策的最佳策略,并自动向人们解释这些策略。通过这种方法构建的决策辅助工具能够改善人类决策。但是,遵循该方法产生的描述非常乏味。我们假设可以通过将自动发现的决策策略作为一系列自然语言指示来克服这个问题。实验1表明,人们确实确实比以前的方法更容易理解此类程序说明。在这一发现的鼓励下,我们开发了一种将我们先前方法的输出转化为程序指示的算法。我们应用了改进的方法来自动为自然主义计划任务(即计划旅行)和自然主义决策任务(即选择抵押)生成决策辅助工具。实验2表明,这些自动产生的决策AID可显着改善人们在计划公路旅行和选择抵押贷款方面的表现。这些发现表明,AI驱动的增强可能有可能改善现实世界中的人类决策。
translated by 谷歌翻译
人们对如何分配其有限的计算资源的决定对人类智慧至关重要。这种元认知能力的一个重要组成部分决定是否继续考虑该做什么并继续下去决定。在这里,我们展示人们通过学习和反向工程师来获得这种能力的潜在的学习机制。使用外在人类规划的过程跟踪范式,我们发现人们迅速适应他们对规划成本和利益的规划。为了发现潜在的元认知学习机制,我们增强了一组具有元认知功能的加强学习模型,并执行了贝叶斯模型选择。我们的结果表明,调整规划量的元认知能力可能通过策略梯度机制来学习,该决策机制是通过传达规划价值的元认知伪奖励引导的。
translated by 谷歌翻译
工人花费大量时间学习如何做出正确的决定。但是,评估给定决策的功效可能很复杂 - 例如,决策结果通常是长期的,并且以复杂的方式与原始决策有关。令人惊讶的是,即使学习良好的决策策略很困难,它们通常可以以简单明了的形式表达。为了关注顺序决策,我们设计了一种新颖的机器学习算法,该算法能够从跟踪数据中提取“最佳实践”,并以可解释的“提示”的形式向人类传达其见解。我们的算法选择了最能弥合人类工人所采取的行动与最佳政策所采取的行动之间差距的提示,以说明行动对实现更高绩效的影响的方式。我们通过一系列参与者管理虚拟厨房的一系列随机对照实验来评估我们的方法。我们的实验表明,我们算法产生的提示可以显着改善相对于直观基准的人类性能。此外,我们讨论了许多经验见解,这些见解可以帮助告知针对人类界面的算法设计。例如,我们发现参与者不仅盲目地遵循我们的技巧的证据。相反,他们将他们与自己的经验结合在一起,以发现改善性能的其他策略。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译
Curiosity for machine agents has been a focus of lively research activity. The study of human and animal curiosity, particularly specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have not yet been well-explored in machine intelligence. In this work, we conduct a comprehensive, multidisciplinary survey of the field of animal and machine curiosity. As a principal contribution of this work, we use this survey as a foundation to introduce and define what we consider to be five of the most important properties of specific curiosity: 1) directedness towards inostensible referents, 2) cessation when satisfied, 3) voluntary exposure, 4) transience, and 5) coherent long-term learning. As a second main contribution of this work, we show how these properties may be implemented together in a proof-of-concept reinforcement learning agent: we demonstrate how the properties manifest in the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations and induced targets of curiosity. As we would hope, our example of a computational specific curiosity agent exhibits short-term directed behaviour while updating long-term preferences to adaptively seek out curiosity-inducing situations. This work, therefore, presents a landmark synthesis and translation of specific curiosity to the domain of machine learning and reinforcement learning and provides a novel view into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-making computational agents in complex environments.
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
近年来,在可解释的AI中取得了重大进展,因为了解深度学习模型的需求已成为人们对AI的信任和道德规范的越来越重要的重要性。顺序决策任务的可理解模型是一个特殊的挑战,因为它们不仅需要了解个人预测,而且需要了解与环境动态相互作用的一系列预测。我们提出了一个框架,用于学习顺序决策任务的可理解模型,在该模型中,使用时间逻辑公式对代理策略进行表征。给定一组试剂痕迹,我们首先使用一种捕获频繁的动作模式的新型嵌入方法聚集痕迹。然后,我们搜索逻辑公式,以解释不同簇中的代理策略。我们使用手工制作的专家政策和受过训练的强化学习代理商的痕迹评估了《星际争霸II》(SC2)中战斗场景的框架。我们为SC2环境实现了一个功能提取器,该功能提取器将痕迹作为高级特征的序列,描述了环境状态和代理重播中代理的本地行为。我们进一步设计了一个可视化工具,描述了环境中单元的运动,这有助于了解不同的任务条件如何导致每个跟踪群集中不同的代理行为模式。实验结果表明,我们的框架能够将试剂痕迹分离为不同的行为群体,我们的战略推理方法会产生一致,有意义且易于理解的策略描述。
translated by 谷歌翻译
Human behavior emerges from planning over elaborate decompositions of tasks into goals, subgoals, and low-level actions. How are these decompositions created and used? Here, we propose and evaluate a normative framework for task decomposition based on the simple idea that people decompose tasks to reduce the overall cost of planning while maintaining task performance. Analyzing 11,117 distinct graph-structured planning tasks, we find that our framework justifies several existing heuristics for task decomposition and makes predictions that can be distinguished from two alternative normative accounts. We report a behavioral study of task decomposition ($N=806$) that uses 30 randomly sampled graphs, a larger and more diverse set than that of any previous behavioral study on this topic. We find that human responses are more consistent with our framework for task decomposition than alternative normative accounts and are most consistent with a heuristic -- betweenness centrality -- that is justified by our approach. Taken together, our results provide new theoretical insight into the computational principles underlying the intelligent structuring of goal-directed behavior.
translated by 谷歌翻译
Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译