我们通过专注于两个流行的转移学习方法,$ \ Alpha $ -weighted-ERM和两级eRM,提供了一种基于GIBBS的转移学习算法的泛化能力的信息 - 理论分析。我们的关键结果是使用输出假设和给定源样本的输出假设和目标训练样本之间的条件对称的KL信息进行精确表征泛化行为。我们的结果也可以应用于在这两个上述GIBBS算法上提供新的无分布泛化误差上限。我们的方法是多才多艺的,因为它还表征了渐近误差和渐近制度中这两个GIBBS算法的过度风险,它们分别收敛到$ \ alpha $ -winution-eRM和两级eRM。基于我们的理论结果,我们表明,转移学习的好处可以被视为偏差折衷,源分布引起的偏差和缺乏目标样本引起的差异。我们认为这一观点可以指导实践中转移学习算法的选择。
translated by 谷歌翻译
转移学习或域适应性与机器学习问题有关,在这些问题中,培训和测试数据可能来自可能不同的概率分布。在这项工作中,我们在Russo和Xu发起的一系列工作之后,就通用错误和转移学习算法的过量风险进行了信息理论分析。我们的结果也许表明,也许正如预期的那样,kullback-leibler(kl)Divergence $ d(\ mu || \ mu')$在$ \ mu $和$ \ mu'$表示分布的特征中起着重要作用。培训数据和测试测试。具体而言,我们为经验风险最小化(ERM)算法提供了概括误差上限,其中两个分布的数据在训练阶段都可用。我们进一步将分析应用于近似的ERM方法,例如Gibbs算法和随机梯度下降方法。然后,我们概括了与$ \ phi $ -Divergence和Wasserstein距离绑定的共同信息。这些概括导致更紧密的范围,并且在$ \ mu $相对于$ \ mu' $的情况下,可以处理案例。此外,我们应用了一套新的技术来获得替代的上限,该界限为某些学习问题提供了快速(最佳)的学习率。最后,受到派生界限的启发,我们提出了Infoboost算法,其中根据信息测量方法对源和目标数据的重要性权重进行了调整。经验结果表明了所提出的算法的有效性。
translated by 谷歌翻译
We derive upper bounds on the generalization error of a learning algorithm in terms of the mutual information between its input and output. The bounds provide an information-theoretic understanding of generalization in learning problems, and give theoretical guidelines for striking the right balance between data fit and generalization by controlling the input-output mutual information. We propose a number of methods for this purpose, among which are algorithms that regularize the ERM algorithm with relative entropy or with random noise. Our work extends and leads to nontrivial improvements on the recent results of Russo and Zou.
translated by 谷歌翻译
在本文中,我们介绍了超模块化$ \ mf $ -Diverences,并为它们提供了三个应用程序:(i)我们在基于超模型$ \ MF $ - 基于独立随机变量的尾部引入了Sanov的上限。分歧并表明我们的广义萨诺夫(Sanov)严格改善了普通的界限,(ii)我们考虑了有损耗的压缩问题,该问题研究了给定失真和代码长度的一组可实现的速率。我们使用互助$ \ mf $ - 信息扩展了利率 - 延伸函数,并使用超模块化$ \ mf $ -Diverences在有限的区块长度方面提供了新的,严格的更好的界限,并且(iii)我们提供了连接具有有限输入/输出共同$ \ mf $的算法的概括误差和广义率延伸问题。该连接使我们能够使用速率函数的下限来限制学习算法的概括误差。我们的界限是基于对利率延伸函数的新下限,该函数(对于某些示例)严格改善了以前最著名的界限。此外,使用超模块化$ \ mf $ -Divergences来减少问题的尺寸并获得单字母界限。
translated by 谷歌翻译
最近,已经证明了信息理论框架可以获得具有随机噪声的随机梯度Langevin Dynamics(SGLD)训练的大型型号的非持续泛化界限。在本文中,我们通过操纵SGLD中的噪声结构来优化信息 - 理论概括。我们证明,由于限制以保证低经验风险,最佳噪声协方差是预期梯度协方差的平方根,如果先前和后部都是联合优化的。这验证了最佳噪声非常接近经验梯度协方差。从技术上讲,我们开发了一种新的信息 - 理论界,其能够实现这种优化分析。然后,我们应用矩阵分析以导出最佳噪声协方差的形式。呈现的制约和结果是通过经验观察验证的。
translated by 谷歌翻译
使用信息理论原理,我们考虑迭代半监督学习(SSL)算法的概括误差(Gen-Error),这些算法迭代地生成了大量未标记数据的伪标记,以逐步完善模型参数。与{\ em绑定} Gen-Error的大多数以前的作品相反,我们为Gen-Error提供了{\ em Exact}的表达,并将其专门为二进制高斯混合模型。我们的理论结果表明,当阶级条件差异不大时,Gen-Error随着迭代次数的数量而减少,但很快就会饱和。另一方面,如果类的条件差异(因此,类别之间的重叠量)很大,则Gen-Error随迭代次数的增加而增加。为了减轻这种不良效果,我们表明正则化可以减少Gen-Error。通过对MNIST和CIFAR数据集进行的广泛实验来证实理论结果,我们注意到,对于易于分类的类别,经过几次伪标记的迭代,Gen-Error会改善,但此后饱和,并且更难难以实现。区分类别,正则化改善了概括性能。
translated by 谷歌翻译
To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
translated by 谷歌翻译
我们研究了广义熵的连续性属性作为潜在的概率分布的函数,用动作空间和损失函数定义,并使用此属性来回答统计学习理论中的基本问题:各种学习方法的过度风险分析。我们首先在几种常用的F分歧,Wassersein距离的熵差异导出了两个分布的熵差,这取决于动作空间的距离和损失函数,以及由熵产生的Bregman发散,这也诱导了两个分布之间的欧几里德距离方面的界限。对于每个一般结果的讨论给出了示例,使用现有的熵差界进行比较,并且基于新结果导出新的相互信息上限。然后,我们将熵差异界限应用于统计学习理论。结果表明,两种流行的学习范式,频繁学习和贝叶斯学习中的过度风险都可以用不同形式的广义熵的连续性研究。然后将分析扩展到广义条件熵的连续性。扩展为贝叶斯决策提供了不匹配的分布来提供性能范围。它也会导致第三个划分的学习范式的过度风险范围,其中决策规则是在经验分布的预定分布家族的预测下进行最佳设计。因此,我们通过广义熵的连续性建立了统计学习三大范式的过度风险分析的统一方法。
translated by 谷歌翻译
用于分类任务的机器学习算法的最终性能通常根据基于测试数据集的经验误差概率(或准确性)来衡量。然而,这些算法通过基于训练集的典型不同 - 更方便的损耗功能而优化了这些算法。对于分类任务,这种损失函数通常是负值损耗,导致众所周知的交叉熵风险,这通常比误差概率更好地表现出(从数值角度)。关于泛化误差的常规研究通常不会考虑训练和测试阶段的损失之间的潜在不匹配。在这项工作中,考虑到基于精度度量和负对数损耗的训练,基于概括的Pock-Wise Pac方法的分析。我们标记此分析Pacman。建立所提到的不匹配可以写成似然比,浓度不平等可以用于根据一些有意义的信息理论量的一些点智选一的界限提供一些关于泛化问题的见解。还提供了对所得界限的分析和与文献中的可用结果进行比较。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
了解现代机器学习设置中的概括一直是统计学习理论的主要挑战之一。在这种情况下,近年来见证了各种泛化范围的发展,表明了不同的复杂性概念,例如数据样本和算法输出之间的相互信息,假设空间的可压缩性以及假设空间的分形维度。尽管这些界限从不同角度照亮了手头的问题,但它们建议的复杂性概念似乎似乎无关,从而限制了它们的高级影响。在这项研究中,我们通过速率理论的镜头证明了新的概括界定,并明确地将相互信息,可压缩性和分形维度的概念联系起来。我们的方法包括(i)通过使用源编码概念来定义可压缩性的广义概念,(ii)表明“压缩错误率”可以与预期和高概率相关。我们表明,在“无损压缩”设置中,我们恢复并改善了现有的基于信息的界限,而“有损压缩”方案使我们能够将概括与速率延伸维度联系起来,这是分形维度的特定概念。我们的结果为概括带来了更统一的观点,并打开了几个未来的研究方向。
translated by 谷歌翻译
我们在对数损失下引入条件密度估计的过程,我们调用SMP(样本Minmax预测器)。该估算器最大限度地减少了统计学习的新一般过度风险。在标准示例中,此绑定量表为$ d / n $,$ d $ d $模型维度和$ n $ sample大小,并在模型拼写条目下批判性仍然有效。作为一个不当(超出型号)的程序,SMP在模型内估算器(如最大似然估计)的内部估算器上,其风险过高的风险降低。相比,与顺序问题的方法相比,我们的界限删除了SubOltimal $ \ log n $因子,可以处理无限的类。对于高斯线性模型,SMP的预测和风险受到协变量的杠杆分数,几乎匹配了在没有条件的线性模型的噪声方差或近似误差的条件下匹配的最佳风险。对于Logistic回归,SMP提供了一种非贝叶斯方法来校准依赖于虚拟样本的概率预测,并且可以通过解决两个逻辑回归来计算。它达到了$ O的非渐近风险((d + b ^ 2r ^ 2)/ n)$,其中$ r $绑定了特征的规范和比较参数的$ B $。相比之下,在模型内估计器内没有比$ \ min达到更好的速率({b r} / {\ sqrt {n}},{d e ^ {br} / {n})$。这为贝叶斯方法提供了更实用的替代方法,这需要近似的后部采样,从而部分地解决了Foster等人提出的问题。 (2018)。
translated by 谷歌翻译
收购数据是机器学习的许多应用中的一项艰巨任务,只有一个人希望并且预期人口风险在单调上汇率增加(更好的性能)。事实证明,甚至对于最小化经验风险的最大限度的算法,甚至不令人惊讶的情况。在训练中的风险和不稳定的非单调行为表现出并出现在双重血统描述中的流行深度学习范式中。这些问题突出了目前对学习算法和泛化的理解缺乏了解。因此,追求这种行为的表征是至关重要的,这是至关重要的。在本文中,我们在弱假设下获得了一致和风险的单调算法,从而解决了一个打开问题Viering等。 2019关于如何避免风险曲线的非单调行为。我们进一步表明,风险单调性不一定以更糟糕的风险率的价格出现。为实现这一目标,我们推出了持有某些非I.I.D的独立利益的新经验伯恩斯坦的浓度不等式。鞅差异序列等进程。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
通过定义和上限,通过定义和上限,分析了贝叶斯学习的最佳成绩性能,通过限定了最小的过度风险(MER):通过从数据学习和最低预期损失可以实现的最低预期损失之间的差距认识到了。 MER的定义提供了一种原则状的方式来定义贝叶斯学习中的不同概念的不确定性,包括炼膜不确定性和最小的认知不确定性。提出了用于衍生MER的上限的两种方法。第一方法,通常适用于具有参数生成模型的贝叶斯学习,通过在模型参数之间的条件互信息和所观察到的数据预测的量之间的条件相互信息。它允许我们量化MER衰减随着更多数据可用而衰减为零的速率。在可实现的模型中,该方法还将MER与生成函数类的丰富性涉及,特别是二进制分类中的VC维度。具有参数预测模型的第二种方法,特别适用于贝叶斯学习,将MER与来自数据的模型参数的最小估计误差相关联。它明确地说明了模型参数估计中的不确定性如何转化为MER和最终预测不确定性。我们还将MER的定义和分析扩展到具有多个模型系列的设置以及使用非参数模型的设置。沿着讨论,我们在贝叶斯学习中的MER与频繁学习的过度风险之间建立了一些比较。
translated by 谷歌翻译
我们以非渐近方式考虑最大似然估计(MLE)的预期对数估计(MLE)的预期似然估计(MLE)的最佳次数(MAL)的缀合物最大(MAP)的问题。令人惊讶的是,我们在文献中没有找到对这个问题的一般解决方案。特别是,当前的理论不适用于高斯或有趣的少数样本制度。在表现出问题的各个方面之后,我们显示我们可以将地图解释为在日志可能性上运行随机镜像下降(SMD)。然而,现代收敛结果不适用于指数家庭的标准例子,突出趋同文献中的孔。我们认为解决这一非常根本的问题可能会对统计和优化社区带来进展。
translated by 谷歌翻译
我们推出了元学学习算法概括性的新信息 - 理论分析。具体地,我们的分析提出了对传统学习 - 学习框架和现代模型 - 不可知的元学习(MAML)算法的通用理解。此外,我们为MAML的随机变体提供了一种数据依赖的泛化,这对于深入的少量学习是不受空置的。与以前的范围相比,依赖于梯度方形规范的界限,对模拟数据和众所周知的少量射击基准测试的经验验证表明,我们的绑定是大多数情况下更紧密的级。
translated by 谷歌翻译
通过使一组基本预测因素投票根据一些权重,即对某些概率分布来获得聚合预测器。根据一些规定的概率分布,通过在一组基本预测器中采样来获得随机预测器。因此,聚合和随机预测器的共同之处包括最小化问题,而是通过对预测器集的概率分布来定义。在统计学习理论中,有一套工具旨在了解此类程序的泛化能力:Pac-Bayesian或Pac-Bayes界。由于D. Mcallester的原始Pac-Bayes界,这些工具在许多方向上得到了大大改善(例如,我们将描述社区错过的O. Catoni的定位技术的简化版本,后来被重新发现“相互信息界“)。最近,Pac-Bayes的界限受到相当大的关注:例如,在2017年的Pac-Bayes上有研讨会,“(几乎)50种贝叶斯学习:Pac-Bayesian趋势和见解”,由B. Guedj,F组织。 。巴赫和P.Merain。这一最近成功的原因之一是通过G. Dziugaite和D. Roy成功地将这些限制应用于神经网络。对Pac-Bayes理论的初步介绍仍然缺失。这是一种尝试提供这样的介绍。
translated by 谷歌翻译
鉴于$ n $ i.i.d.从未知的分发$ P $绘制的样本,何时可以生成更大的$ n + m $ samples,这些标题不能与$ n + m $ i.i.d区别区别。从$ p $绘制的样品?(AXELROD等人2019)将该问题正式化为样本放大问题,并为离散分布和高斯位置模型提供了最佳放大程序。然而,这些程序和相关的下限定制到特定分布类,对样本扩增的一般统计理解仍然很大程度上。在这项工作中,我们通过推出通常适用的放大程序,下限技术和与现有统计概念的联系来放置对公司统计基础的样本放大问题。我们的技术适用于一大类分布,包括指数家庭,并在样本放大和分配学习之间建立严格的联系。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译