剪辑在零拍传输学习任务上产生了令人印象深刻的结果,并被视为BERT或GPT3等基础模型。具有丰富表示形式的剪辑视觉模型是使用Infonce目标和自然语言监督对特定任务进行微调之前进行预训练的。尽管剪辑在零拍传输学习方面表现出色,但它遭受了解释的问题,也就是说,它的重点是一个或几个功能,同时忽略了其他相关功能。该问题是由于原始多模式数据中未充分提取协方差结构而引起的。我们建议使用现代Hopfield网络来解决解释的问题。他们检索到的嵌入具有富集的协方差结构,该结构源自存储嵌入中特征的共发生。但是,现代的Hopfield网络增加了阻碍学习的Infonce目标的饱和效应。我们建议使用Infoloob目标来减轻这种饱和效果。我们介绍了小说``对比抛弃了一个增压'(Cloob),该小说使用现代的Hopfield网络与Infoloob Opportions一起进行协方差丰富。在实验中,我们将Cloob与概念标题进行预培训后的剪辑和YFCC数据集进行了比较,相对于其在其他数据集上的零拍传输学习性能。 Cloob在所有考虑的架构和数据集中始终在零摄像转移学习上胜过剪辑。
translated by 谷歌翻译
我们提出了Clip-Lite,一种通过与文本注释的特征对齐方式进行视觉表示学习的信息有效方法。与先前提出的剪辑模型相比,剪辑液在优化其对比学学习目标期间只需要一个负图像文本样本对。我们通过利用信息有效的较低限制来实现这一点,以最大化两个输入模态之间的相互信息。这允许剪辑Lite培训,在获得比夹子的更好的性能的同时具有显着减少的数据和批量尺寸。我们通过在Coco-Tablions数据集上预先绘制来评估剪贴画并对其他数据集进行测试传输。 Clip-Lite在Pascal VOC分类上获得+ 15.4%的映射绝对增益,并在ImageNet上获得A + 22.1%的前1个精度增益,同时与其他更复杂,文本监督模型相当或优越。 Clip-Lite还优于剪辑图像和文本检索,零拍分类和视觉接地。最后,通过在表示学习期间执行显式图像文本对齐,我们显示Clip-Lite可以利用语言语义来鼓励可以在下游任务中使用的无偏见的视觉表示。
translated by 谷歌翻译
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as Ima-geNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated crossattention models. The representations also enable cross-modality search with complex text and text + image queries.
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
传统的计算机视觉模型受过培训,以预测固定的预定义类别。最近,自然语言已被证明是一个更广泛而更丰富的监督来源,为视觉概念提供更精细的描述,而不是监督“黄金”标签。以前的作品,例如剪辑,使用InfoNce丢失来训练模型以预测图像和文本标题之间的配对。然而,剪辑是饥饿的数据,需要超过400米的图像文本对进行培训。效率低下可以归因于图像文本对嘈杂的事实。为了解决这个问题,我们提出了水獭(有效的零射击识别的最佳运输蒸馏),它使用在线熵最佳运输,找到一个软图像文本与标签进行对比学习。基于预磨料的图像和文本编码器,用电站培训的型号实现了强大的性能,只有3M图像文本对。与InfoNce损失相比,标记平滑和知识蒸馏,OTTER始终如一地优于零拍摄图像(19,958类)和来自腾讯ML图像的多标记Imagenet 10k(10032类)的零拍摄评估中的这些基线。在4个不同的数据集/架构设置x 6度量上,OTTER优于(32)或绑定(2)34中的所有基准。
translated by 谷歌翻译
在本文中,我们从优化的角度研究了对比度学习,旨在分析和解决现有的对比学习方法的基本问题,这些方法依靠大批量大小或大型矢量词典。我们考虑了对比度学习的全球目标,该目标将每个正对与锚点的所有负对对比。从优化的角度来看,我们解释了为什么诸如SIMCLR之类的现有方法需要大批量大小才能获得令人满意的结果。为了消除此类要求,我们提出了一种记忆有效的随机优化算法,用于求解名为SOGCLR的对比度学习的全局目标。我们表明,在足够数量的迭代次数之后,在合理条件下,其优化误差可以忽略不计,或者对于稍有不同的全局对比目标而减少。从经验上讲,我们证明具有小批量大小的SOGCLR(例如256)可以在Imagenet-1k上的自我监督学习任务上获得与具有较大批量大小(例如8192)的SIMCLR相似的性能。我们还试图证明所提出的优化技术是通用的,可以应用于解决其他对比损失,例如双峰对比度学习的双向对比损失。提出的方法是在我们开源的图书馆libauc(www.libauc.org)中实现的。
translated by 谷歌翻译
对比度学习(CL)方法有效地学习数据表示,而无需标记监督,在该方法中,编码器通过单VS-MONY SOFTMAX跨透镜损失将每个正样本在多个负样本上对比。通过利用大量未标记的图像数据,在Imagenet上预先训练时,最近的CL方法获得了有希望的结果,这是一个具有均衡图像类的曲制曲线曲线集。但是,当对野外图像进行预训练时,它们往往会产生较差的性能。在本文中,为了进一步提高CL的性能并增强其对未经保育数据集的鲁棒性,我们提出了一种双重的CL策略,该策略将其内部查询的正(负)样本对比,然后才能决定多么强烈地拉动(推)。我们通过对比度吸引力和对比度排斥(CACR)意识到这一策略,这使得查询不仅发挥了更大的力量来吸引更遥远的正样本,而且可以驱除更接近的负面样本。理论分析表明,CACR通过考虑正/阴性样品的分布之间的差异来概括CL的行为,而正/负样品的分布通常与查询独立进行采样,并且它们的真实条件分布给出了查询。我们证明了这种独特的阳性吸引力和阴性排斥机制,这有助于消除在数据集的策划较低时尤其有益于数据及其潜在表示的统一先验分布的需求。对许多标准视觉任务进行的大规模大规模实验表明,CACR不仅在表示学习中的基准数据集上始终优于现有的CL方法,而且在对不平衡图像数据集进行预训练时,还表现出更好的鲁棒性。
translated by 谷歌翻译
了解产品内容的视觉和语言表示对于电子商务中的搜索和推荐应用程序至关重要。作为在线购物平台的骨干,受到代表学习研究的最新成功的启发,我们提出了一个对比度学习框架,该框架使用未标记的原始产品文本和图像来对齐语言和视觉模型。我们介绍了我们用来培训大规模代表性学习模型的技术,并共享解决特定领域挑战的解决方案。我们使用预先训练的模型作为多种下游任务的骨干进行研究,包括类别分类,属性提取,产品匹配,产品聚类和成人产品识别。实验结果表明,我们所提出的方法在每个下游任务中均优于单个模态和多种方式的基线。
translated by 谷歌翻译
具有对比目标的训练前视觉模型已显示出令人鼓舞的结果,这些结果既可以扩展到大型未经切割的数据集,又可以传输到许多下游应用程序。以下一些作品针对提高数据效率,通过添加自学意义来提高数据效率,但是在这些作品中的单个空间上定义了对比度损失(图像文本)对比度损失和内域(图像图像)对比度损失,因此许多可行的可行性监督的组合被忽略了。为了克服这个问题,我们提出了Uniclip,这是对对比语言图像预训练的统一框架。 Uniclip将域间对和域内对的对比损失整合到一个单一的通用空间中。 Uniclip的三个关键组成部分解决了整合不同域之间对比度损失时发生的差异:(1)增强感知功能嵌入,(2)MP-NCE损失和(3)域相似性度量。 Uniclip的表现优于以前的视觉语言预训练方法,在下游任务的各种单模式和多模式上。在我们的实验中,我们表明每个组成的分支都对最终性能有很好的贡献。
translated by 谷歌翻译
自动视觉解对我们多样化和开放的世界需要计算机视觉模型,以概括为特定任务的最小定制,类似于人类视力。计算机视觉基础型号培训,培训多样化,大型数据集,可以适应各种下游任务,对该任务来解决现实世界计算机视觉应用而言至关重要。虽然现有的视觉基础模型如剪辑,对齐和吴道2.0主要集中在映射图像和文本表示到跨模型共享表示,我们介绍了一台新的计算机视觉基础模型,佛罗伦萨,扩大粗糙的表示(现场)到精细(对象),从静态(图像)到动态(视频),以及从RGB到多个模态(标题,深度)。通过从Web级图像文本数据中纳入通用视觉语言表示,我们的佛罗伦萨模型可以很容易地适应各种计算机视觉任务,例如分类,检索,对象检测,VQA,图像标题,视频检索和动作识别。此外,佛罗伦萨在许多类型的转移学习中表现出出色的表现:全面采样的微调,线性探测,几次射击传输和用于新颖图像和物体的零拍摄传输。所有这些属性对于我们的视觉基础模型至关重要,以提供通用视觉任务。佛罗伦萨实现了新的最先进的导致44个代表性基准,例如Imagenet-1K零射击分类,最高1精度为83.74,最高5个精度为97.18,62.4地图上的Coco微调, 80.36在VQA上,动力学-600上的87.8。
translated by 谷歌翻译
对比性语言图像预处理(剪辑)受到广泛关注,因为它的学会表示形式可以很好地转移到各种下游任务上。在剪辑训练期间,Infonce目标旨在使正面图像对齐和分开的负面图像对齐。在本文中,我们在此过程中显示了表示分组的效果:Infonce客观间接通过随机出现的模式内锚将语义相似的表示形式组合在一起。我们引入了原型对比度图像预处理(原始的),以提高其效率并提高其针对模态差距的鲁棒性来增强这种分组。具体而言,原始利润在图像和文本空间之间建立了原型级别的歧视,从而有效传输了更高级别的结构知识。我们进一步提出了典型的背部翻译(PBT),以将表示形式分组与表示形式对齐,从而有效地学习了在较大的模态差距下有意义的表示。 PBT还使我们能够以更丰富的先验知识介绍其他外部教师。 ProtoClip通过在线情节培训策略进行了培训,这可以扩展到无限量的数据。结合上述新颖的设计,我们在概念标题上训练原始设计,并获得了 +5.81%的成像网线性探测改进,并且 +2.01%的Imagenet Zero Zero-shot分类改进。代码可在https://github.com/megvii-research/protoclip上找到。
translated by 谷歌翻译
对比表示学习旨在通过估计数据的多个视图之间的共享信息来获得有用的表示形式。在这里,数据增强的选择对学会表示的质量很敏感:随着更难的应用,数据增加了,视图共享更多与任务相关的信息,但也可以妨碍表示代表的概括能力。在此激励的基础上,我们提出了一种新的强大的对比度学习计划,即r \'enyicl,可以通过利用r \'enyi差异来有效地管理更艰难的增强。我们的方法建立在r \'enyi差异的变异下限基础上,但是由于差异很大,对变异方法的使用是不切实际的。要应对这一挑战,我们提出了一个新颖的对比目标,该目标是进行变异估计的新型对比目标偏斜r \'enyi的分歧,并提供理论保证,以确保偏差差异如何导致稳定训练。我们表明,r \'enyi对比度学习目标执行先天的硬性负面样本和易于选择的阳性抽样学习有用的功能并忽略滋扰功能。通过在Imagenet上进行实验,我们表明,r \'enyi对比度学习具有更强的增强性能优于其他自我监督的方法,而无需额外的正则化或计算上的开销。图形和表格,显示了与其他对比方法相比的经验增益。
translated by 谷歌翻译
已经证明对比学习有效地对未标记数据的预训练图像模型有效,并且有希望的医学图像分类等任务的结果。在预训练期间使用配对文本和图像(例如放射性报告和图像)甚至进一步改善了结果。尽管如此,大多数现有方法将图像分类为下游任务,并且对于像语义分割或物体检测等本地化任务可能不是最佳的。因此,我们提出了从愿景和文本(Lovt)的局部代表学习,以实现我们最佳知识,这是针对本地化医学成像任务的第一种文本监督的预训练方法。我们的方法将实例级图像报告对比学习与图像区域和报告句子表示的局部对比学习结合起来。我们评估LOVT和常用的预培训方法,这些评估框架是由五个公共数据集的胸部X光上的18个本地化任务组成的新评估框架。虽然没有单一的最佳方法,但是,在18个研究的任务中,Lovt在11个中最佳地表现出优选的选择本地化任务的首选方法。
translated by 谷歌翻译
我们从统计依赖性角度接近自我监督的图像表示学习,提出与希尔伯特 - 施密特独立性标准(SSL-HSIC)自我监督的学习。 SSL-HSIC最大化图像和图像标识的变换表示之间的依赖性,同时最小化这些表示的核化方差。该框架产生了对Infonce的新了解,在不同转换之间的相互信息(MI)上的变分下限。虽然已知MI本身具有可能导致学习无意义的表示的病理学,但其绑定表现得更好:我们表明它隐含地近似于SSL-HSIC(具有略微不同的规范器)。我们的方法还向我们深入了解Byol,一种无与伦比的SSL方法,因为SSL-HSIC类似地了解了当地的样本邻居。 SSL-HSIC允许我们在批量大小中直接在时间线性上直接优化统计依赖性,而无需限制数据假设或间接相互信息估计。 SSL-HSIC培训或没有目标网络,SSL-HSIC与Imagenet的标准线性评估相匹配,半监督学习和转移到其他分类和视觉任务,如语义分割,深度估计和对象识别等。代码可在https://github.com/deepmind/ssl_hsic提供。
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
由于其无监督的性质和下游任务的信息性特征表示,实例歧视自我监督的代表学习受到了受到关注的。在实践中,它通常使用比监督类的数量更多的负样本。然而,现有分析存在不一致;从理论上讲,大量的负样本在下游监督任务上降低了分类性能,同时凭经验,它们提高了性能。我们提供了一种新颖的框架,用于使用优惠券收集器的问题分析关于负样本的经验结果。我们的界限可以通过增加负样本的数量来隐立地纳入自我监督损失中的下游任务的监督损失。我们确认我们的拟议分析持有现实世界基准数据集。
translated by 谷歌翻译
自我监督模型在机器学习(ML)中越来越普遍,因为它们减少了对昂贵标签数据的需求。由于它们在下游应用程序中的多功能性,它们越来越多地用作通过公共API暴露的服务。同时,由于它们输出的向量表示的高维度,这些编码器模型特别容易受到模型窃取攻击的影响。然而,编码器仍然没有防御:窃取攻击的现有缓解策略集中在监督学习上。我们介绍了一个新的数据集推理防御,该防御使用受害者编码器模型的私人培训集将其所有权归因于窃取的情况。直觉是,如果受害者从受害者那里窃取了编码器的培训数据,则在受害者的培训数据上,编码器的输出表示的对数可能比测试数据更高,但如果对其进行了独立培训,则不会。我们使用密度估计模型来计算该对数可能性。作为我们评估的一部分,我们还建议测量被盗编码器的保真度并量化盗窃检测的有效性,而无需涉及下游任务;相反,我们利用相互信息和距离测量值。我们在视觉领域中广泛的经验结果表明,数据集推断是捍卫自我监督模型免受模型窃取的有前途的方向。
translated by 谷歌翻译
学习医学图像的视觉表示(例如X射线)是医学图像理解的核心,但由于人类注释的稀缺性,其进步已经阻止了它。现有的工作通常依赖于从成像网预处理传输的微调权重,由于图像特征截然不同,这是次优的,或者是从文本报告数据与医学图像配对的基于规则的标签提取,这是不准确的,难以推广。同时,最近的几项研究表明,从自然图像中学习的对比度学习令人兴奋,但由于它们的高层间相似性,我们发现这些方法对医学图像无济于事。我们提出了Concirt,这是一种替代的无监督策略,通过利用自然存在的配对描述性文本来学习医学视觉表示。我们通过两种模式之间的双向对比度目标对医学图像进行预处理编码的新方法是域,无关,不需要其他专家输入。我们通过将预处理的权重转移到4个医学图像分类任务和2个零射击检索任务中来测试交通,并证明它导致图像表示,在大多数设置中,它们都超过了强大的基线。值得注意的是,在所有4个分类任务中,我们的方法仅需要10 \%标记的培训数据与成像网初始化的对应物,以实现更好或可比的性能,从而证明了卓越的数据效率。
translated by 谷歌翻译
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at https://github.com/LAION-AI/scaling-laws-openclip
translated by 谷歌翻译
剪辑的发展[Radford等,2021]引发了关于语言监督是否可以导致与传统仅图像方法更可转移表示的视觉模型的争论。我们的工作通过对两种方法的学习能力进行了对下游分类任务的学习能力进行仔细控制的比较来研究这个问题。我们发现,当预训练数据集符合某些标准时 - 它足够大,并且包含具有较低变异性的描述性字幕 - 仅图像的方法也与剪辑的传输性能不匹配,即使它们接受了更多图像数据的培训。但是,与人们期望的相反,在某些情况下,没有满足这些标准,其中通过标题增加的监督实际上是有害的。在我们的发现的激励下,我们设计了简单的处方,以使剪辑能够更好地利用现有预训练数据集中存在的语言信息。
translated by 谷歌翻译