Recently, contrastive learning attracts increasing interests in neural text generation as a new solution to alleviate the exposure bias problem. It introduces a sequence-level training signal which is crucial to generation tasks that always rely on auto-regressive decoding. However, previous methods using contrastive learning in neural text generation usually lead to inferior performance. In this paper, we analyse the underlying reasons and propose a new Contrastive Neural Text generation framework, CoNT. CoNT addresses bottlenecks that prevent contrastive learning from being widely adopted in generation tasks from three aspects -- the construction of contrastive examples, the choice of the contrastive loss, and the strategy in decoding. We validate CoNT on five generation tasks with ten benchmarks, including machine translation, summarization, code comment generation, data-to-text generation and commonsense generation. Experimental results show that CoNT clearly outperforms the conventional training framework on all the ten benchmarks with a convincing margin. Especially, CoNT surpasses previous the most competitive contrastive learning method for text generation, by 1.50 BLEU on machine translation and 1.77 ROUGE-1 on summarization, respectively. It achieves new state-of-the-art on summarization, code comment generation (without external data) and data-to-text generation.
translated by 谷歌翻译
用于提取和抽象性摘要系统的传统培训范例始终仅使用令牌级别或句子级培训目标。但是,始终从摘要级别评估输出摘要,从而导致培训和评估的不一致。在本文中,我们提出了一个基于对比度学习的重新排列框架,用于一阶段的摘要,称为COLO。通过建模对比目标,我们表明摘要模型能够根据摘要级别的分数直接生成摘要,而无需其他模块和参数。广泛的实验表明,CORO在CNN/DailyMail基准测试中提高了单阶段系统的提取和抽象结果,将其提高到44.58和46.33 Rouge-1得分,同时保留了参数效率和推断效率。与最先进的多阶段系统相比,我们节省了100多个GPU训练时间,并在推理期间获得3〜8加速比,同时保持可比的结果。
translated by 谷歌翻译
Pre-trained language models have been successful in natural language generation (NLG) tasks. While various decoding methods have been employed, they often produce suboptimal results. We first present an empirical analysis of three NLG tasks: summarization, machine translation, and constrained text generation. We found that selecting the best output from the results of multiple decoding methods can significantly improve performance. To further improve reranking for NLG tasks, we proposed a novel method, \textsc{PairReranker}, which uses a single encoder and a pairwise loss function to jointly encode a source input and a pair of candidates and compare them. Experiments on three NLG tasks demonstrated the effectiveness and flexibility of \textsc{PairReranker}, showing strong results, compared with previous baselines. In addition, our \textsc{PairReranker} can generalize to significantly improve GPT-3 (text-davinci-003) results (e.g., 24.55\% on CommonGen and 11.35\% on WMT18 zh-en), even though our rerankers are not trained with any GPT-3 candidates.
translated by 谷歌翻译
由于暴露偏见,大多数现有的自然语言产生(NLG)模型通过最大化的可能性目标训练了推理阶段的文本结果不佳。在本文中,为了解决此问题,我们重新审视生成的框架,并提出了用于文本生成任务的联合发电机库(JGR)培训算法。在JGR中,生成器模型是通过最大化两个目标来训练的:训练语料库的可能性和排名者模型给出的预期奖励。同时,Ranker模型从发电机模型中获取输入样本,并学会了将优质样本与生成池区分开来。发电机和排名模型交替优化,直到收敛为止。在实证研究中,提出的JGR模型在五个公共基准测试中实现了新的最先进的表现,涵盖了三项大众一代任务:摘要,问题生成和回答生成。我们将在https://github.com/microsoft/advnlg上提供代码,数据和模型。
translated by 谷歌翻译
文本生成对于许多自然语言处理应用至关重要。然而,基于最大化的解码方法(例如,神经语言模型的光束搜索)通常会导致解析解决方案 - 生成的文本是不自然的,并且包含不良的重复。现有方法通过采样或修改训练目标引入随机性,以降低某些令牌的概率(例如,不可能训练)。但是,它们通常会导致缺乏连贯性的解决方案。在这项工作中,我们表明,模型变性的根本原因是令牌表示的各向异性分布。我们提出了一种对比解决方案:(i)SIMCTG,是校准模型表示空间的对比训练目标,以及(ii)一种解码方法 - 对比度搜索 - 以鼓励多样性,同时在生成的文本中保持连贯性。对两种语言的三个基准测试的广泛实验和分析表明,我们提出的方法显着优于人类和自动指标评估的当前最新文本生成方法。
translated by 谷歌翻译
End-to-end (E2E) task-oriented dialogue (ToD) systems are prone to fall into the so-called 'likelihood trap', resulting in generated responses which are dull, repetitive, and often inconsistent with dialogue history. Comparing ranked lists of multiple generated responses against the 'gold response' (from training data) reveals a wide diversity in response quality, with many good responses placed lower in the ranked list. The main challenge, addressed in this work, is then how to reach beyond greedily generated system responses, that is, how to obtain and select such high-quality responses from the list of overgenerated responses at inference without availability of the gold response. To this end, we propose a simple yet effective reranking method which aims to select high-quality items from the lists of responses initially overgenerated by the system. The idea is to use any sequence-level (similarity) scoring function to divide the semantic space of responses into high-scoring versus low-scoring partitions. At training, the high-scoring partition comprises all generated responses whose similarity to the gold response is higher than the similarity of the greedy response to the gold response. At inference, the aim is to estimate the probability that each overgenerated response belongs to the high-scoring partition, given only previous dialogue history. We validate the robustness and versatility of our proposed method on the standard MultiWOZ dataset: our methods improve a state-of-the-art E2E ToD system by 2.4 BLEU, 3.2 ROUGE, and 2.8 METEOR scores, achieving new peak results. Additional experiments on the BiTOD dataset and human evaluation further ascertain the generalisability and effectiveness of the proposed framework.
translated by 谷歌翻译
对比学习模型在无监督的视觉表示学习中取得了巨大成功,这使得相同图像的不同视图的特征表示之间的相似性最大化,同时最小化不同图像的视图的特征表示之间的相似性。在文本摘要中,输出摘要是输入文档的较短形式,它们具有类似的含义。在本文中,我们提出了对监督抽象文本摘要的对比学习模型,在那里我们查看文档,它的金摘要及其模型生成的摘要,与相同的平均表示的不同视图,并在培训期间最大化它们之间的相似性。我们在三个不同的摘要数据集上改进了一个强序列到序列文本生成模型(即,BART)。人类评估还表明,与其对应物相比,我们的模型达到了更好的忠实性评级,没有对比的目标。
translated by 谷歌翻译
The input and output of most text generation tasks can be transformed to two sequences of tokens and they can be modeled using sequence-to-sequence learning modeling tools such as Transformers. These models are usually trained by maximizing the likelihood the output text sequence and assumes the input sequence and all gold preceding tokens are given during training, while during inference the model suffers from the exposure bias problem (i.e., it only has access to its previously predicted tokens rather gold tokens during beam search). In this paper, we propose MoCa ({\bf Mo}mentum {\bf Ca}libration) for text generation. MoCa is an online method that dynamically generates slowly evolving (but consistent) samples using a momentum moving average generator with beam search and MoCa learns to align its model scores of these samples with their actual qualities. Experiments on four text generation datasets (i.e., CNN/DailyMail, XSum, SAMSum and Gigaword) show MoCa consistently improves strong pre-trained transformers using vanilla fine-tuning and we achieve the state-of-the-art results on CNN/DailyMail and SAMSum datasets.
translated by 谷歌翻译
Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.
translated by 谷歌翻译
生成事实 - 一致的摘要是抽象总结的具有挑战性的任务。以前的作品主要编码事实信息或在解码后执行校正后/等级。在本文中,我们从对比学习的角度提供了一个事实 - 一致的解决方案,这是之前作品的自然延伸。我们提出CO2SUM(对比一致性),一种对比的学习方案,可以很容易地应用于事实 - 一致的抽象总结的序列模型,证明了模型可以在不修改架构的情况下感知。 CO2SUM在编码器上应用对比度学习,该编码器可以帮助模型意识到输入文章中包含的事实信息,或者对解码器进行对比学习,这使得模型生成事实正确的输出摘要。更重要的是,这两种方案是正交的,可以组合以进一步改善忠诚。关于公共基准测试的综合实验表明,与其他强大的事实 - 一致的摘要基线相比,CO2SUM提高了大型预先训练的语言模型的忠诚,并达到竞争力。
translated by 谷歌翻译
Current abstractive summarization systems present important weaknesses which prevent their deployment in real-world applications, such as the omission of relevant information and the generation of factual inconsistencies (also known as hallucinations). At the same time, automatic evaluation metrics such as CTC scores have been recently proposed that exhibit a higher correlation with human judgments than traditional lexical-overlap metrics such as ROUGE. In this work, we intend to close the loop by leveraging the recent advances in summarization metrics to create quality-aware abstractive summarizers. Namely, we propose an energy-based model that learns to re-rank summaries according to one or a combination of these metrics. We experiment using several metrics to train our energy-based re-ranker and show that it consistently improves the scores achieved by the predicted summaries. Nonetheless, human evaluation results show that the re-ranking approach should be used with care for highly abstractive summaries, as the available metrics are not yet sufficiently reliable for this purpose.
translated by 谷歌翻译
低频词预测仍然是现代神经电机翻译(NMT)系统的挑战。最近的自适应培训方法通过强调整体培训目标的重量来促进不频繁词语的产出。尽管召回了低频词的召回,但它们的预测精度意外地受到自适应目标的阻碍。灵感来自观察到低频词形成更紧凑的嵌入空间,我们从代表学习角度解决这一挑战。具体地,我们提出了一种频率感知的令牌级对比度学习方法,其中每个解码步骤的隐藏状态以基于相应的字频率的柔和对比方式从其他目标单词的对应物推开。我们对广泛使用的NIST汉语 - 英语和WMT14英语 - 德语翻译任务进行实验。经验结果表明,我们的提出方法不仅可以显着提高翻译质量,还可以提高词汇分集和优化词表示空间。进一步调查揭示了,与相关的自适应培训策略相比,我们对低频词预测方法的优势在于在不牺牲精度的情况下在不同频率上的令牌级召回的鲁棒性。
translated by 谷歌翻译
现有摘要系统主要生成纯粹依赖源文档内容的摘要。但是,即使对于人类,我们通常需要一些引用或示例,帮助我们充分了解源文档并以特定格式写入摘要。但是如何找到高质量的样式,并将它们纳入总结系统仍然挑战和探索。在本文中,我们提出了一种由致密的猎犬和摘要提升的新型检索增强的抽象概要框架。首先,检索几个密切相关的示例作为补充输入,以帮助生成模型更全面地了解文本。此外,检索的示例也可以在引导模型以捕获特定语料库的写入风格中起作用。我们在多个域和两个骨干型号的各种摘要数据集上验证我们的方法:BERT和BART。结果表明,与强大的预训练模型相比,我们的框架在胭脂-1分数中获得了1.38〜4.66的显着改善,并在账单上实现了新的最先进。人类评估表明我们的检索增强模型可以更好地捕获特定于域的书写风格。
translated by 谷歌翻译
通常使用自回归生成模型,尤其是对于涉及顺序数据的那些任务。然而,由于链式有条件建模的内在特征(例如,暴露偏见或缺乏远距离连贯性),由于许多固有的缺陷而困扰着它们,严重限制了它们正确模型分布的能力。在本文中,我们提出了一种独特的方法,该方法称为训练自回旋生成模型,以利用精心设计的基于能量的学习目标。通过利用SoftMax操作的额外自由度,我们被允许使自回归模型本身成为基于能量的模型,用于衡量输入的可能性,而无需引入任何额外的参数。此外,我们表明可以有效地训练电子臂,并能够减轻暴露偏置问题并增加自回归生成模型的时间连贯性。广泛的经验结果涵盖了语言建模,神经机器翻译和图像产生等基准,证明了拟议方法的有效性。
translated by 谷歌翻译
上下文:堆栈溢出对于寻求编程问题答案的软件开发人员非常有帮助。先前的研究表明,越来越多的问题质量低,因此从潜在的答案者那里获得了更少的关注。 Gao等。提出了一个基于LSTM的模型(即BilstM-CC),以自动从代码片段中生成问题标题,以提高问题质量。但是,只有在问题主体中使用代码段无法为标题生成提供足够的信息,而LSTMS无法捕获令牌之间的远程依赖性。目的:本文提出了基于深度学习的新型模型CCBERT,旨在通过充分利用整个问题主体的双模式信息来增强问题标题生成的性能。方法:CCBERT遵循编码器范式范式,并使用Codebert将问题主体编码为隐藏的表示形式,堆叠的变压器解码器以生成预测的代币,以及附加的复制注意层来完善输出分布。编码器和解码器都执行多头自我注意操作,以更好地捕获远程依赖性。本文构建了一个数据集,该数据集包含大约200,000个高质量问题,该数据从Stack Overflow正式发布的数据中滤除,以验证CCBERT模型的有效性。结果:CCBERT优于数据集上的所有基线模型。对仅代码和低资源数据集进行的实验表明,CCBERT的优势性能较小。人类评估还显示了CCBERT关于可读性和相关标准的出色表现。
translated by 谷歌翻译
在本文中,我们建议利用对话的独特特征,共享参与者的常识性知识,以解决总结它们的困难。我们提出了病态的框架,该框架使用常识推论作为其他背景。与以前仅依赖于输入对话的工作相比,Sick使用外部知识模型来生成丰富的常识推断,并选择具有基于相似性选择方法的最可能的推理。基于生病的,病人++的理解为监督,在总结多任务学习环境中的对话时,添加了产生常识推断的任务。实验结果表明,通过注入常识性知识,我们的框架比现有方法产生更多信息和一致的摘要。
translated by 谷歌翻译
Retrieval-augmented Neural Machine Translation models have been successful in many translation scenarios. Different from previous works that make use of mutually similar but redundant translation memories~(TMs), we propose a new retrieval-augmented NMT to model contrastively retrieved translation memories that are holistically similar to the source sentence while individually contrastive to each other providing maximal information gains in three phases. First, in TM retrieval phase, we adopt a contrastive retrieval algorithm to avoid redundancy and uninformativeness of similar translation pieces. Second, in memory encoding stage, given a set of TMs we propose a novel Hierarchical Group Attention module to gather both local context of each TM and global context of the whole TM set. Finally, in training phase, a Multi-TM contrastive learning objective is introduced to learn salient feature of each TM with respect to target sentence. Experimental results show that our framework obtains improvements over strong baselines on the benchmark datasets.
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
我们提供了从文本到文本变换器(T5)的第一次探索句子嵌入式。句子嵌入式广泛适用于语言处理任务。虽然T5在作为序列到序列映射问题的语言任务上实现令人印象深刻的性能,但目前尚不清楚如何从编码器解码器模型生成陈列嵌入的句子。我们调查三种方法提取T5句子嵌入方法:两个仅利用T5编码器,一个使用全T5编码器解码器模型。为了支持我们的调查,我们建立了一个新的句子代表转移基准,SentGlue,它将Senteval Toolkit扩展到粘合基准的九个任务。我们的编码器的型号优于Senteval和SentGlue传输任务的句子 - BERT和SIMCSE句子嵌入,包括语义文本相似性(STS)。发现从数百万到数十亿参数的缩放T5产生一致的进一步改进。最后,我们的编码器 - 解码器方法在使用句子嵌入时在STS上实现了新的最先进的。我们的模型在https://tfhub.dev/google/collections/sentence-t5/1发布。
translated by 谷歌翻译
变量名称对于传达预期的程序行为至关重要。基于机器学习的程序分析方法使用变量名称表示广泛的任务,例如建议新的变量名称和错误检测。理想情况下,这些方法可以捕获句法相似性的名称之间的语义关系,例如,名称平均和均值的事实是相似的。不幸的是,以前的工作发现,即使是先前的最佳的表示方法主要是捕获相关性(是否有两个变量始终链接),而不是相似性(是否具有相同的含义)。我们提出了VarCLR,一种用于学习变量名称的语义表示的新方法,这些方法有效地捕获了这种更严格的意义上的可变相似性。我们观察到这个问题是对比学习的优秀契合,旨在最小化明确类似的输入之间的距离,同时最大化不同输入之间的距离。这需要标记的培训数据,因此我们构建了一种新颖的弱监督的变量重命名数据集,从GitHub编辑开采。我们表明VarCLR能够有效地应用BERT等复杂的通用语言模型,以变为变量名称表示,因此也是与变量名称相似性搜索或拼写校正等相关的下游任务。 varclr产生模型,显着越优于idbench的最先进的现有基准,明确地捕获可变相似度(与相关性不同)。最后,我们贡献了所有数据,代码和预先训练模型的版本,旨在为现有或未来程序分析中使用的可变表示提供的可变表示的替代品。
translated by 谷歌翻译