持续咳嗽是呼吸系统疾病的主要症状。通过可穿戴物品来检测咳嗽,特别是在Covid-19大流行期间,已经支付了越来越多的研究。在所有类型的传感器中,麦克风最广泛地用于检测咳嗽。然而,处理音频信号所需的强力消耗阻碍了对电池限制的商业可穿戴产品(例如耳塞)的连续音频咳嗽检测。我们呈现了利用较低功率传感器,惯性测量单元(IMU)的COUGHTRIGGER作为咳嗽检测激活器,以触发更高功率的传感器,用于音频处理和分类。它能够以最小的电池消耗运行作为备用服务,并在从IMU检测到候选咳嗽时触发基于音频的咳嗽检测。此外,IMU的使用带来了改善咳嗽检测特异性的益处。实验是对45个科目进行的,我们的IMU的模型达到了0.77 AUC评分,留出了一个主题的评价。我们还验证了其对自由生活数据的有效性,并通过设备实现。
translated by 谷歌翻译
全球2019百万人被感染,450万失去了持续的Covid-19大流行病。直到疫苗变得广泛的可用,预防措施和安全措施,如戴着面具,身体疏远,避免面对面触摸是一些抑制病毒传播的主要手段。脸部触摸是一种强迫性的人Begvior,在不进行持续派生的情况下,不能防止,即使那么它是不可避免的。为了解决这个问题,我们设计了一种基于SmartWatch的解决方案,Covidalert,利用了随机森林算法,从SmartWatch训练了加速度计和陀螺数据,以检测到面部的手动转换,并向用户发送快速触觉警报。 Covidalert是高能量的,因为它使用STA / LTA算法作为网守,在用户处于非活动状态时缩短手表上随机林模型的使用。我们的系统的整体准确性为88.4%,具有低假阴性和误报。我们还通过在商业化石Gen 5 Smartwatch上实现了系统的活力。
translated by 谷歌翻译
智能基础设施中的人类活动从个人穿着的可穿戴设备中产生大量IMU数据。许多现有的研究依赖于人类活动识别(HAR)的这种感觉数据;但是,主要的瓶颈之一是它们依赖预先注销或标记的数据。手动人工驱动的注释既不是可扩展的,也不是有效的,而现有的自动通量技术在很大程度上取决于视频签名。尽管如此,基于视频的自动保管仍需要高度的计算资源,并且当将来自智能家庭(智能家庭)的数据转移到云中时,仍存在隐私问题。本文利用了人类活动产生的声学标志,以标记可穿戴设备的IMU数据,从而减轻资源需求和数据隐私问题。即使两个人在相同的环境环境下执行同时但不同的活动,我们也利用基于声学的预训练的HAR模型来对IMU数据进行跨模式标记。我们观察到,在环境声学环境中两个人执行的同时活动中,存在非重叠的声学差距,这有助于我们解决重叠的活动签名以单独标记它们。对两个现实生活中的内部数据集的拟议方法的原则评估进一步增强以创建双重乘员设置,表明该框架可以正确注释来自两个人的大量未标记的IMU数据,这些数据具有$ \ mathbf { 82.59 \%} $($ \ Mathbf {\ pm 17.94 \%} $)和$ \ Mathbf {98.32 \%} $($ \ Mathbf {\ Mathbf {\ PM 3.68 \%} $)环境。
translated by 谷歌翻译
可穿戴设备,不断收集用户的各种传感器数据,增加了无意和敏感信息的推论的机会,例如在物理键盘上键入的密码。我们彻底看看使用电拍摄(EMG)数据的潜力,这是一个新的传感器模式,这是市场新的,但最近在可穿戴物的上下文中受到关注,用于增强现实(AR),用于键盘侧通道攻击。我们的方法是基于使用Myo Armband收集传感器数据的逼真场景中对象攻击之间的神经网络。在我们的方法中,与加速度计和陀螺相比,EMG数据被证明是最突出的信息来源,增加了击键检测性能。对于我们对原始数据的端到端方法,我们报告了击键检测的平均平衡准确性,击键检测的平均高度高精度为52级,为不同优势密码的密钥识别约32% 。我们创建了一个广泛的数据集,包括从37个志愿者录制的310 000次击键,它可作为开放式访问,以及用于创建给定结果的源代码。
translated by 谷歌翻译
日常生活的活动措施(ADL)是整体健康状况的重要指标,但难以测量诊所。使用手腕磨损的加速度计自动和准确的人类活动识别(HAR)可以实现ADL的实用和成本高效的远程监控。开发高质量Har中的关键障碍是缺乏大型标记的数据集和在将小型策级数据集培训的模型应用于现实生活中的不均匀数据的连续流时缺乏大型标记数据集和性能损失。在这项工作中,我们设计了一个自我监督的学习范例,以创建可以跨设备和主题概括的加速度计数据的强大表示。我们展示了这种代表可以使用很少的标签分离日常生活活动并实现强大的RAR准确性(在多个基准数据集上)。我们还提出了一种分割算法,可以识别突出活动的段,并在连续的现实生活数据上升高掌握。
translated by 谷歌翻译
TimeSeries Partitioning是大多数机器学习驱动的传感器的IOT应用程序的重要步骤。本文介绍了一种采样效率,鲁棒,时序分割模型和算法。我们表明,通过基于最大平均差异(MMD)的分割目标来学习特定于分割目标的表示,我们的算法可以鲁布布地检测不同应用程序的时间序列事件。我们的损耗功能允许我们推断是否从相同的分布(空假设)中绘制了连续的样本序列,并确定拒绝零假设的对之间的变化点(即,来自不同的分布)。我们展示了其在基于环境传感的活动识别的实际IOT部署中的适用性。此外,虽然文献中存在许多关于变更点检测的作品,但我们的模型明显更简单,匹配或优于最先进的方法。我们可以平均地在9-93秒内完全培训我们的模型,而在不同应用程序上的数据的差异很小。
translated by 谷歌翻译
Covid-19大流行为感染检测和监测解决方案产生了重大的兴趣和需求。在本文中,我们提出了一种机器学习方法,可以使用在消费者设备上进行的录音来快速分离Covid-19。该方法将信号处理方法与微调深层学习网络相结合,提供了信号去噪,咳嗽检测和分类的方法。我们还开发并部署了一个移动应用程序,使用症状检查器与语音,呼吸和咳嗽信号一起使用,以检测Covid-19感染。该应用程序对两个开放的数据集和最终用户在测试版测试期间收集的嘈杂数据显示了鲁棒性能。
translated by 谷歌翻译
基于相机的非接触式光电子溶血性描绘是指一组流行的非接触生理测量技术。目前的最先进的神经模型通常以伴随金标准生理测量的视频以监督方式培训。但是,它们通常概括域名差别示例(即,与培训集中的视频不同)。个性化模型可以帮助提高型号的概括性,但许多个性化技术仍然需要一些金标准数据。为了帮助缓解这一依赖性,在本文中,我们展示了一种名为Mobilememon的新型移动感应系统,该系统是第一个移动个性化远程生理传感系统,它利用智能手机上的前后相机,为培训产生高质量的自我监督标签个性化非接触式相机的PPG模型。为了评估MobilemeLephys的稳健性,我们使用39名参与者进行了一个用户学习,他们在不同的移动设备下完成了一组任务,照明条件/强度,运动任务和皮肤类型。我们的研究结果表明,Mobilephys显着优于最先进的设备监督培训和几次拍摄适应方法。通过广泛的用户研究,我们进一步检查了Mobilephys如何在复杂的真实环境中执行。我们设想,从我们所提出的双摄像机移动传感系统产生的校准或基于相机的非接触式PPG模型将为智能镜,健身和移动健康应用等许多未来应用打开门。
translated by 谷歌翻译
由于几个因素之间的微妙权衡:参与者的隐私,生态有效性,数据保真度和后勤开销,记录野外未脚本人类互动的动态是具有挑战性的。为了解决这些问题,在社区精神上为社区的“数据集”之后,我们提出了会议生活实验室(Conflab):一个新的概念,用于多模式多模式数据收集,野生野外社交对话。对于此处描述的Conflab的首次实例化,我们在一次大型国际会议上组织了现实生活中的专业网络活动。该数据集涉及48个会议参与者,捕捉了地位,熟人和网络动机的各种组合。我们的捕获设置改善了先前野外数据集的数据保真度,同时保留隐私敏感性:从非侵入性的架空视图中获得8个视频(1920x1080,60 fps),并具有定制的可穿戴传感器,并带有车载记录(完整9) - 轴IMU),具有隐私性的低频音频(1250 Hz)和基于蓝牙的接近度。此外,我们开发了用于采集时分布式硬件同步的自定义解决方案,并以高采样速率对身体关键点和动作进行了及时的连续注释。我们的基准测试展示了与野外隐私保护社交数据分析有关的一些开放研究任务:从高架摄像头视图,基于骨架的No-Audio扬声器检测和F-Formation检测中的关键点检测。
translated by 谷歌翻译
我们探索Calico是一种微型可重新定位的可穿戴系统,具有快速,精确的运动,用于体内相互作用,驱动和感应。印花布由两轮机器人和一条轨道机制或“铁路”组成,机器人在其上行驶。机器人具有独立的,尺寸很小,并且具有其他传感器扩展选项。轨道系统允许机器人沿着用户的身体移动并到达任何预定位置。它还包括旋转开关以启用复杂的路由选项,当提出发散轨道时。我们报告了印花布的设计和实施,并通过一系列的系统性能评估。然后,我们介绍一些应用程序方案和用户研究,以了解印花布作为舞蹈教练的潜力,并探索对我们情景的定性感知,以告知该领域未来的研究。
translated by 谷歌翻译
队列研究越来越多地使用加速度计进行体育活动和久坐行为估计。这些设备往往比自我报告易于错误,可以全天捕获活动,并且是经济的。但是,在自由生活的情况下和受试者对象变化下,基于髋关节wor的数据估算久坐行为的先前方法通常是无效的或次优的。在本文中,我们提出了一个本地马尔可夫切换模型,该模型考虑了这种情况,并引入了一种姿势分类和久坐行为分析的一般程序,该程序自然适合该模型。我们的方法在时间序列中具有更改点检测方法,也是一个两个阶段分类步骤,将数据标记为3类(坐着,站立,步进)。通过严格的训练测试范例,我们表明我们的方法达到了80%的精度。此外,我们的方法是强大的,易于解释。
translated by 谷歌翻译
由于照顾不断增长的老年人口的医疗和财务需求,对跌倒的及时可靠发现是一个大型且快速增长的研究领域。在过去的20年中,高质量硬件(高质量传感器和AI微芯片)和软件(机器学习算法)技术的可用性通过为开发人员提供开发此类系统的功能,从而成为这项研究的催化剂。这项研究开发了多个应用组件,以研究秋季检测系统的发展挑战和选择,并为未来的研究提供材料。使用此方法开发的智能应用程序通过秋季检测模型实验和模型移动部署的结果验证。总体上表现最好的模型是标准化的RESNET152,并带有2S窗口尺寸的调整数据集,可实现92.8%的AUC,7.28%的灵敏度和98.33%的特异性。鉴于这些结果很明显,加速度计和心电图传感器对秋季检测有益,并允许跌倒和其他活动之间的歧视。由于所得数据集中确定的弱点,这项研究为改进的空间留下了很大的改进空间。这些改进包括在跌落的临界阶段使用标签协议,增加数据集样品的数量,改善测试主题表示形式,并通过频域预处理进行实验。
translated by 谷歌翻译
瀑布是全世界老年人死亡的主要原因之一。有效检测跌倒可以减少并发症和伤害的风险。可以使用可穿戴设备或环境传感器进行秋季检测;这些方法可能会在用户合规性问题或错误警报方面困难。摄像机提供了一种被动的选择;但是,定期的RGB摄像机受到改变的照明条件和隐私问题的影响。从机器学习的角度来看,由于跌倒的稀有性和可变性,开发有效的跌落检测系统是具有挑战性的。许多现有的秋季检测数据集缺乏重要的现实考虑因素,例如不同的照明,日常生活的连续活动(ADL)和相机放置。缺乏这些考虑使得很难开发可以在现实世界中有效运行的预测模型。为了解决这些局限性,我们引入了一个新型的多模式数据集(MUVIM),其中包含四种视觉方式:红外,深度,RGB和热摄像机。这些模式提供了诸如混淆的面部特征和在弱光条件下的性能改善的好处。我们将秋季检测作为异常检测问题提出,其中仅在ADL上对定制的时空卷积自动编码器进行了训练,因此跌落会增加重建误差。我们的结果表明,红外摄像机提供了最高水平的性能(AUC ROC = 0.94),其次是热摄像机(AUC ROC = 0.87),深度(AUC ROC = 0.86)和RGB(AUC ROC = 0.83)。这项研究提供了一个独特的机会,可以分析摄像头模式在检测家庭环境中跌落的效用,同时平衡性能,被动性和隐私。
translated by 谷歌翻译
随着Covid-19大流行的爆发,急迫有效地识别可能与已经感染Covid-19感染的人密切接触的人。该识别个人的过程,也称为“联系跟踪”,对该病毒传播的遏制和控制具有重大影响。但是,手动跟踪已被证明是无效的呼叫自动接触跟踪方法。因此,本研究提出了一种自动化机器学习系统,用于使用通过手持设备传输的传感器数据来识别可能已经与Covid-19感染的其他人接触的个人。本文介绍了到达最佳解决方案模型的不同方法,其有效地预测使用梯度升压算法和时间序列特征提取的人是否已经密切接近受感染的个体。
translated by 谷歌翻译
本文提出和评估了一种用于脑电图(EEG)信号分类的基于新的基于实例的方法。 EEG信号的非静止性质,与具有有限培训数据的苛刻的模式识别以及潜在的嘈杂的信号采集条件相结合,并且具有潜在的嘈杂的信号采集条件,这是在本研究中报告的工作。所提出的自适应模板增强机制通过单独处理每个特征维度来改变特征级实例,因此导致改进的类别分离和更好的查询类匹配。将提出的基于实例的学习算法与许多情况下的一些相关算法进行了比较。使用单个干燥传感器的低成本系统获得的临床级64电极EEG数据库以及使用低成本系统获得的低质量(高噪声水平)EEG数据库已用于生物识别人员识别中的评估。所提出的方法在识别和验证方案中表明了显着提高的分类准确性。特别是,看到这种新方法可以为嘈杂的EEG数据提供良好的分类性能,表明其适用于各种应用的可能性。
translated by 谷歌翻译
来自世界卫生组织的现行指南表明,萨尔科夫-2冠状病毒导致新型冠状病毒疾病(Covid-19),通过呼吸液滴或通过接触传输。当受污染的双手触摸嘴巴,鼻子或眼睛的粘膜时,会发生接触传输。此外,病原体也可以通过受污染的手从一个表面转移到另一个表面,这便于通过间接接触传输。因此,手卫生极为重要,无法防止萨尔库夫-2病毒的传播。此外,手工洗涤和/或手摩擦也破坏了其他病毒和细菌的传播,引起常见的感冒,流感和肺炎,从而降低了整体疾病负担。可穿戴设备(如Smartwatches)的巨大扩散,包括加速,旋转,磁场传感器等,以及人工智能的现代技术,如机器学习和最近深度学习,允许开发准确的应用人类活动的认可和分类,如:步行,攀爬楼梯,跑步,拍手,坐着,睡觉等。在这项工作中,我们评估了基于当前智能手​​表的自动系统的可行性,该智能手表能够识别何时受试者洗涤或摩擦它的手,以监测频率和持续时间的参数,并评估手势的有效性。我们的初步结果显示了分别为深度和标准学习技术的约95%和约94%的分类准确性。
translated by 谷歌翻译
Unhealthy dietary habits are considered as the primary cause of multiple chronic diseases such as obesity and diabetes. The automatic food intake monitoring system has the potential to improve the quality of life (QoF) of people with dietary related diseases through dietary assessment. In this work, we propose a novel contact-less radar-based food intake monitoring approach. Specifically, a Frequency Modulated Continuous Wave (FMCW) radar sensor is employed to recognize fine-grained eating and drinking gestures. The fine-grained eating/drinking gesture contains a series of movement from raising the hand to the mouth until putting away the hand from the mouth. A 3D temporal convolutional network (3D-TCN) is developed to detect and segment eating and drinking gestures in meal sessions by processing the Range-Doppler Cube (RD Cube). Unlike previous radar-based research, this work collects data in continuous meal sessions. We create a public dataset that contains 48 meal sessions (3121 eating gestures and 608 drinking gestures) from 48 participants with a total duration of 783 minutes. Four eating styles (fork & knife, chopsticks, spoon, hand) are included in this dataset. To validate the performance of the proposed approach, 8-fold cross validation method is applied. Experimental results show that our proposed 3D-TCN outperforms the model that combines a convolutional neural network and a long-short-term-memory network (CNN-LSTM), and also the CNN-Bidirectional LSTM model (CNN-BiLSTM) in eating and drinking gesture detection. The 3D-TCN model achieves a segmental F1-score of 0.887 and 0.844 for eating and drinking gestures, respectively. The results of the proposed approach indicate the feasibility of using radar for fine-grained eating and drinking gesture detection and segmentation in meal sessions.
translated by 谷歌翻译
使用诸如嵌入惯性测量单元(IMU)传感器的可穿戴设备(如智能手表)的人类活动识别(Har)具有与我们日常生活相关的各种应用,例如锻炼跟踪和健康监控。在本文中,我们使用在不同身体位置佩戴的多个IMU传感器提出了一种基于人类活动识别的新颖性方法。首先,设计传感器设计特征提取模块以提取具有卷积神经网络(CNNS)的各个传感器的最辨别特征。其次,开发了一种基于注意的融合机制,以了解不同车身位置处的传感器的重要性,并产生细节特征表示。最后,应用传感器间特征提取模块来学习与分类器连接的传感器间相关性以输出预测的活动。所提出的方法是使用五个公共数据集进行评估,并且在各种活动类别上优于最先进的方法。
translated by 谷歌翻译
Covid-19大流行是人类的祸害,宣称全世界超过500万人的生活。虽然疫苗正在全世界分布,但表观需要实惠的筛选技术,以便为无法获得传统医学的世界服务。人工智能可以提供利用咳嗽声音作为主要筛选模式的解决方案。本文介绍了多种模型,这些模型在学术文献目前呈现的最大评估数据集上取得了相对尊敬的性能。此外,我们还显示性能随着培训数据规模而增加,表明世界各地的数据收集,以帮助使用非传统方式对抗Covid-19大流行。
translated by 谷歌翻译
我们寻求基于8,380临床验证样品的咳嗽声,评估Covid-19的快速初级筛查工具的检测性能,从8,380临床验证的样品进行实验室分子测试(2,339 Covid-19阳性和6,041个Covid-19负面)。根据患者的定量RT-PCR(QRT-PCR)分析,循环阈值和淋巴细胞计数,根据结果和严重程度临床标记样品。我们所提出的通用方法是一种基于经验模式分解(EMD)的算法,其随后基于音频特征的张量和具有称为Deplecough的卷积层的深层人工神经网络分类器的分类。基于张量尺寸的数量,即DepeCough2D和DeepCOUGH3D,两种不同版本的深度。这些方法已部署在多平台概念验证Web应用程序CoughDetect中以匿名管理此测试。 Covid-19识别结果率达到了98.800.83%,敏感性为96.431.85%的有前途的AUC(面积),特异性为96.201.74%,81.08%5.05%AUC,用于识别三个严重程度。我们提出的Web工具和支持稳健,快速,需要Covid-19的需求识别的基础算法有助于快速检测感染。我们认为,它有可能大大妨碍世界各地的Covid-19大流行。
translated by 谷歌翻译