很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
半监督域适应性(SSDA)中的主要挑战之一是标记源和目标样本数量之间的偏差比,导致该模型偏向源域。 SSDA中的最新作品表明,仅将标记的目标样品与源样本对齐可能导致目标域与源域的不完全域对齐。在我们的方法中,为了使两个域对齐,我们利用对比的损失,使用来自两个域的监督样本学习语义上有意义的域不可知特征空间。为了减轻偏斜标签比率引起的挑战,我们通过将其特征表示形式与来自源和目标域的标记样品的特征表示形式进行比较,为未标记的目标样本进行了伪造。此外,为了增加目标域的支持,在训练过程中,这些潜在的嘈杂的伪标签逐渐被逐渐注入标记的目标数据集中。具体而言,我们使用温度缩放的余弦相似性度量将软伪标签分配给未标记的目标样品。此外,我们计算每个未标记样品的软伪标签的指数移动平均值。这些伪标签逐渐注入或删除)(从)基于置信阈值(以补充源和目标分布的比对)(从)中(从)中。最后,我们在标记和伪标记的数据集上使用有监督的对比损失来对齐源和目标分布。使用我们提出的方法,我们在SSDA基准测试中展示了最先进的性能-Office-Home,Domainnet和Office-31。
translated by 谷歌翻译
半监督域适应(SSDA)是将学习者调整到新域,只有一小组标记的数据集在源域上给出时,只有一小组标记的样本。在本文中,我们提出了一种基于对的SSDA方法,使用用样品对的自蒸馏来适应靶域的模型。每个样本对由来自标记数据集(即源或标记为目标)的教师样本以及来自未标记数据集的学生样本(即,未标记的目标)组成。我们的方法通过在教师和学生之间传输中间样式来生成助手功能,然后通过最小化学生和助手之间的输出差异来培训模型。在培训期间,助手逐渐弥合了两个域之间的差异,从而让学生容易地从老师那里学习。标准基准测试的实验评估表明,我们的方法有效地减少了域间和域内的差异,从而实现了对最近的方法的显着改进。
translated by 谷歌翻译
当前有监督的跨域图像检索方法可以实现出色的性能。但是,数据收集和标签的成本施加了在实际应用程序中实践部署的棘手障碍。在本文中,我们研究了无监督的跨域图像检索任务,其中类标签和配对注释不再是训练的先决条件。这是一项极具挑战性的任务,因为没有对内域特征表示学习和跨域对准的监督。我们通过引入:1)一种新的群体对比度学习机制来应对这两个挑战,以帮助提取班级语义感知特征,以及2)新的距离距离损失,以有效地测量并最大程度地减少域差异而无需任何外部监督。在办公室和域名数据集上进行的实验始终显示出与最先进方法相比,我们的框架的出色图像检索精度。我们的源代码可以在https://github.com/conghuihu/ucdir上找到。
translated by 谷歌翻译
自我监督的学习(SSL)最近成为特征学习方法中的最爱。因此,它可以吸引域适应方法来考虑结合SSL。直觉是强制执行实例级别一致性,使得预测器在域中变得不变。但是,域适应制度中的大多数现有SSL方法通常被视为独立的辅助组件,使域自适应的签名无人看管。实际上,域间隙消失的最佳区域和SSL PERUSES的实例级别约束可能根本不一致。从这一点来看,我们向一个特定的范式的自我监督学习量身定制,用于域适应,即可转让的对比学习(TCL),这与SSL和所需的跨域转移性相一致地联系起来。我们发现对比学习本质上是一个合适的域适应候选者,因为它的实例不变性假设可以方便地促进由域适应任务青睐的跨域类级不变性。基于特定的记忆库结构和伪标签策略,TCL然后通过清洁和新的对比损失来惩罚源头和靶之间的跨域内域差异。免费午餐是由于纳入对比学习,TCL依赖于移动平均的关键编码器,自然地实现了用于目标数据的伪标签的暂停标签,这避免了无额外的成本。因此,TCL有效地减少了跨域间隙。通过对基准(Office-Home,Visda-2017,Diamet-Five,PACS和Domainnet)进行广泛的实验,用于单源和多源域适配任务,TCL已经证明了最先进的性能。
translated by 谷歌翻译
作为对数据有效使用的研究,多源无监督的域适应性将知识从带有标记数据的多个源域转移到了未标记的目标域。但是,目标域中不同域和嘈杂的伪标签之间的分布差异都导致多源无监督域适应方法的性能瓶颈。鉴于此,我们提出了一种将注意力驱动的领域融合和耐噪声学习(ADNT)整合到上述两个问题的方法。首先,我们建立了相反的注意结构,以在特征和诱导域运动之间执行信息。通过这种方法,当域差异降低时,特征的可区分性也可以显着提高。其次,基于无监督的域适应训练的特征,我们设计了自适应的反向横向熵损失,该损失可以直接对伪标签的产生施加约束。最后,结合了这两种方法,几个基准的实验结果进一步验证了我们提出的ADNT的有效性,并证明了优于最新方法的性能。
translated by 谷歌翻译
无源域的适应(SFDA)旨在将预先培训的源模型调整到未标记的目标域而无需访问标记良好的源数据的情况下,由于数据隐私,安全性和传输问题,这是一个更实用的设置。为了弥补缺乏源数据,大多数现有方法引入了基于特征原型的伪标记策略,以实现自我训练模型的适应性。但是,特征原型是通过基于实例级预测的特征群集获得的,该特征群集是偏见的,并且倾向于导致嘈杂的标签,因为源和目标之间的视觉域间隙通常不同。此外,我们发现单中心特征原型可能无效地表示每个类别并引入负转移,尤其是对于这些硬转移数据。为了解决这些问题,我们为SFDA任务提供了一般类平衡的多中心动态原型(BMD)策略。具体而言,对于每个目标类别,我们首先引入全球类间平衡抽样策略,以汇总潜在的代表性目标样本。然后,我们设计了一类多中心聚类策略,以实现更健壮和代表性的原型生成。与在固定培训期更新伪标签的现有策略相反,我们进一步引入了动态伪标签策略,以在模型适应过程中结合网络更新信息。广泛的实验表明,所提出的模型不可替代的BMD策略显着改善了代表性的SFDA方法,以产生新的最新结果。该代码可在https://github.com/ispc-lab/bmd上找到。
translated by 谷歌翻译
虽然监督语义分割存在重大进展,但由于领域偏差,将分段模型部署到解除域来仍然具有挑战性。域适应可以通过将知识从标记的源域传输到未标记的目标域来帮助。以前的方法通常尝试执行对全局特征的适应,然而,通常忽略要计入特征空间中的每个像素的本地语义附属机构,导致较少的可辨性。为解决这个问题,我们提出了一种用于细粒度阶级对齐的新型语义原型对比学习框架。具体地,语义原型提供了用于每个像素鉴别的表示学习的监控信号,并且需要在特征空间中的源极和目标域的每个像素来反映相应的语义原型的内容。通过这种方式,我们的框架能够明确地制作较近的类别的像素表示,并且进一步越来越多地分开,以改善分割模型的鲁棒性以及减轻域移位问题。与最先进的方法相比,我们的方法易于实施并达到优异的结果,如众多实验所展示的那样。代码在[此HTTPS URL](https://github.com/binhuixie/spcl)上公开可用。
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
在元学习框架下设计了许多射门学习方法,这些方法从各种学习任务中学习并推广到新任务。这些元学习方法在从同一分布(I.I.D.观察)中绘制的所有样本中的情况下实现了预期的性能。然而,在现实世界应用中,很少拍摄的学习范式往往遭受数据转移,即,即使在相同的任务中,也可以从各种数据分布中汲取不同任务中的示例。大多数现有的几次拍摄方法不考虑数据班次,因此在数据分布换档时显示降级性能。然而,由于每个任务中的标记样本数量有限的标记样本,因此在几次拍摄学习中解决数据转换问题是不普遍的。针对解决此问题,我们提出了一种新的基于度量的元学习框架,以便在知识图表的帮助下提取任务特定的表示和任务共享表示。因此,任务内的数据偏移可以通过任务共享和特定于任务的表示的组合来组合。拟议的模型是对流行的基准测试和两个构造的新具有挑战性的数据集。评估结果表明了其显着性能。
translated by 谷歌翻译
Self-training is a competitive approach in domain adaptive segmentation, which trains the network with the pseudo labels on the target domain. However inevitably, the pseudo labels are noisy and the target features are dispersed due to the discrepancy between source and target domains. In this paper, we rely on representative prototypes, the feature centroids of classes, to address the two issues for unsupervised domain adaptation. In particular, we take one step further and exploit the feature distances from prototypes that provide richer information than mere prototypes. Specifically, we use it to estimate the likelihood of pseudo labels to facilitate online correction in the course of training. Meanwhile, we align the prototypical assignments based on relative feature distances for two different views of the same target, producing a more compact target feature space. Moreover, we find that distilling the already learned knowledge to a self-supervised pretrained model further boosts the performance. Our method shows tremendous performance advantage over state-of-the-art methods. We will make the code publicly available.
translated by 谷歌翻译
为了将训练有素的模型直接概括为看不见的目标域,域概括(DG)是一种新提出的学习范式,引起了很大的关注。以前的DG模型通常需要在训练过程中观察到的源域中的足够数量的带注释的样品。在本文中,我们放宽了有关完全注释的要求,并研究了半监督域的概括(SSDG),在训练过程中,只有一个源域与其他完全未标记的域一起完全注释。由于要解决观察到的源域之间的域间隙和预测看不见的目标域之间的挑战,我们提出了一个通过关节域吸引的标签和双分类器的新型深框架,以产生高质量的伪标记。具体来说,为了预测域移位下的准确伪标记,开发了一个域吸引的伪标记模块。此外,考虑到概括和伪标记之间的目标不一致:前者防止在所有源域上过度拟合,而后者可能过分适合未标记的源域,以高精度,我们采用双分类器来独立执行伪标记和域名,并在训练过程中执行伪造域通用化。 。当为未标记的源域生成准确的伪标记时,将域混合操作应用于标记和未标记域之间的新域,这对于提高模型的通用能力是有益的。公开可用的DG基准数据集的广泛结果显示了我们提出的SSDG方法的功效。
translated by 谷歌翻译
我们提出了一种用于语义分割的新型无监督域适应方法,该方法将训练的模型概括为源图像和相应的地面真相标签到目标域。域自适应语义分割的关键是学习域,不变和判别特征,而无需目标地面真相标签。为此,我们提出了一个双向像素 - 型对比型学习框架,该框架可最大程度地减少同一对象类特征的类内变化,同时无论域,无论域如何,都可以最大程度地提高不同阶层的阶层变化。具体而言,我们的框架将像素级特征与目标和源图像中同一对象类的原型保持一致(即分别为正面对),将它们设置为不同的类别(即负对),并执行对齐和分离在源图像中具有像素级特征的另一个方向的过程,目标图像中的原型。跨域匹配鼓励域不变特征表示,而双向像素 - 型对应对应关系汇总了同一对象类的特征,提供了歧视性特征。为了建立对比度学习的训练对,我们建议使用非参数标签转移(即跨不同域的像素 - 型对应关系,就可以生成目标图像的动态伪标签。我们还提出了一种校准方法,以补偿训练过程中逐渐补偿原型的阶级域偏差。
translated by 谷歌翻译
在这项工作中,我们试图通过设计简单和紧凑的条件领域的逆势培训方法来解决无监督的域适应。我们首先重新审视简单的级联调节策略,其中特征与输出预测连接为鉴别器的输入。我们发现倾斜策略遭受了弱势调节力量。我们进一步证明扩大连接预测的规范可以有效地激励条件域对齐。因此,我们通过将输出预测标准化具有相同的特征的输出预测来改善连接调节,并且派生方法作为归一化输出调节器〜(名词)。然而,对域对齐的原始输出预测的调理,名词遭受目标域的不准确预测。为此,我们建议将原型空间中的跨域特征对齐方式而不是输出空间。将新的原型基于原型的调节与名词相结合,我们将增强方法作为基于原型的归一化输出调节器〜(代词)。对象识别和语义分割的实验表明,名词可以有效地对准域跨域的多模态结构,甚至优于最先进的域侵犯训练方法。与基于原型的调节一起,代词进一步提高了UDA的多个对象识别基准上的名词的适应性能。
translated by 谷歌翻译
深度学习极大地提高了语义细分的性能,但是,它的成功依赖于大量注释的培训数据的可用性。因此,许多努力致力于域自适应语义分割,重点是将语义知识从标记的源域转移到未标记的目标域。现有的自我训练方法通常需要多轮训练,而基于对抗训练的另一个流行框架已知对超参数敏感。在本文中,我们提出了一个易于训练的框架,该框架学习了域自适应语义分割的域不变原型。特别是,我们表明域的适应性与很少的学习共享一个共同的角色,因为两者都旨在识别一些从大量可见数据中学到的知识的看不见的数据。因此,我们提出了一个统一的框架,用于域适应和很少的学习。核心思想是使用从几个镜头注释的目标图像中提取的类原型来对源图像和目标图像的像素进行分类。我们的方法仅涉及一个阶段训练,不需要对大规模的未经通知的目标图像进行培训。此外,我们的方法可以扩展到域适应性和几乎没有射击学习的变体。关于适应GTA5到CITYSCAPES和合成景观的实验表明,我们的方法实现了对最先进的竞争性能。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named Source HypOthesis Transfer (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and selfsupervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.
translated by 谷歌翻译
Contemporary domain adaptation methods are very effective at aligning feature distributions of source and target domains without any target supervision. However, we show that these techniques perform poorly when even a few labeled examples are available in the target domain. To address this semi-supervised domain adaptation (SSDA) setting, we propose a novel Minimax Entropy (MME) approach that adversarially optimizes an adaptive few-shot model. Our base model consists of a feature encoding network, followed by a classification layer that computes the features' similarity to estimated prototypes (representatives of each class). Adaptation is achieved by alternately maximizing the conditional entropy of unlabeled target data with respect to the classifier and minimizing it with respect to the feature encoder. We empirically demonstrate the superiority of our method over many baselines, including conventional feature alignment and few-shot methods, setting a new state of the art for SSDA. Our code is available at http://cs-people. bu.edu/keisaito/research/MME.html.
translated by 谷歌翻译
本文研究了一个新的,实用但具有挑战性的问题,称为类无监督的域名适应性(CI-UDA),其中标记的源域包含所有类别,但是未标记的目标域中的类别依次增加。由于两个困难,这个问题具有挑战性。首先,源和目标标签集在每个时间步骤都不一致,这使得很难进行准确的域对齐。其次,以前的目标类在当前步骤中不可用,从而忘记了先前的知识。为了解决这个问题,我们提出了一种新型的原型引导连续适应(PROCA)方法,由两种解决方案策略组成。 1)标签原型识别:我们通过检测具有目标样本的累积预测概率的共享类来识别目标标签原型。 2)基于原型的对齐和重播:基于确定的标签原型,我们对齐域并强制执行模型以保留先前的知识。有了这两种策略,ProCA能够有效地将源模型改编为类未标记的目标域。广泛的实验证明了Proca在解决CI-UDA方面的有效性和优势。源代码可从https://github.com/hongbin98/proca.git获得
translated by 谷歌翻译