在交叉语言设置中讨厌语音检测代表所有中型和大型在线平台的最重要的感兴趣区域。未能在全球范围内妥善解决这个问题已经过时地导致了道德上可疑的现实生活事件,人类死亡和仇恨本身的永久。本文说明了微调改变的多语言变压器模型(Mbert,XLM-Roberta)关于这一重要的社会数据科学任务,与英语到法语,反之亦然和每种语言的交叉思考,包括关于迭代改进和比较误差分析的部分。
translated by 谷歌翻译
随着社交媒体平台影响的增长,滥用的影响变得越来越有影响力。自动检测威胁和滥用语言的重要性不能高估。但是,大多数现有的研究和最先进的方法都以英语为目标语言,对低资产品语言的工作有限。在本文中,我们介绍了乌尔都语的两项滥用和威胁性语言检测的任务,该任务在全球范围内拥有超过1.7亿扬声器。两者都被视为二进制分类任务,其中需要参与系统将乌尔都语中的推文分类为两个类别,即:(i)第一个任务的滥用和不滥用,以及(ii)第二次威胁和不威胁。我们提供两个手动注释的数据集,其中包含标有(i)滥用和非虐待的推文,以及(ii)威胁和无威胁。滥用数据集在火车零件中包含2400个注释的推文,测试部分中包含1100个注释的推文。威胁数据集在火车部分中包含6000个注释的推文,测试部分中包含3950个注释的推文。我们还为这两个任务提供了逻辑回归和基于BERT的基线分类器。在这项共同的任务中,来自六个国家的21个团队注册参加了参与(印度,巴基斯坦,中国,马来西亚,阿拉伯联合酋长国和台湾),有10个团队提交了子任务A的奔跑,这是虐待语言检测,9个团队提交了他们的奔跑对于正在威胁语言检测的子任务B,七个团队提交了技术报告。最佳性能系统达到子任务A的F1得分值为0.880,子任务为0.545。对于两个子任务,基于M-Bert的变压器模型都表现出最佳性能。
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
社交媒体数据已成为有关现实世界危机事件的及时信息的有用来源。与将社交媒体用于灾难管理有关的主要任务之一是自动识别与危机相关的消息。关于该主题的大多数研究都集中在特定语言中特定类型事件的数据分析上。这限制了概括现有方法的可能性,因为模型不能直接应用于新类型的事件或其他语言。在这项工作中,我们研究了通过利用跨语言和跨域标记数据来自动对与危机事件相关的消息进行分类的任务。我们的目标是利用来自高资源语言的标记数据来对其他(低资源)语言和/或新(以前看不见的)类型的危机情况进行分类。在我们的研究中,我们从文献中合并了一个大型统一数据集,其中包含多个危机事件和语言。我们的经验发现表明,确实有可能利用英语危机事件的数据来对其他语言(例如西班牙语和意大利语)(80.0%的F1得分)对相同类型的事件进行分类。此外,我们在跨语言环境中为跨域任务(80.0%F1得分)取得了良好的性能。总体而言,我们的工作有助于改善数据稀缺问题,这对于多语言危机分类非常重要。特别是,当时间是本质的时候,可以减轻紧急事件中的冷启动情况。
translated by 谷歌翻译
仇恨言论是一种在线骚扰的形式,涉及使用滥用语言,并且在社交媒体帖子中通常可以看到。这种骚扰主要集中在诸如宗教,性别,种族等的特定群体特征上,如今它既有社会和经济后果。文本文章中对滥用语言的自动检测一直是一项艰巨的任务,但最近它从科学界获得了很多兴趣。本文解决了在社交媒体中辨别仇恨内容的重要问题。我们在这项工作中提出的模型是基于LSTM神经网络体系结构的现有方法的扩展,我们在短文中适当地增强和微调以检测某些形式的仇恨语言,例如种族主义或性别歧视。最重要的增强是转换为由复发性神经网络(RNN)分类器组成的两阶段方案。将第一阶段的所有一Vs式分类器(OVR)分类器的输出组合在一起,并用于训练第二阶段分类器,最终决定了骚扰的类型。我们的研究包括对在16K推文的公共语料库中评估的第二阶段提出的几种替代方法的性能比较,然后对另一个数据集进行了概括研究。报道的结果表明,与当前的最新技术相比,在仇恨言论检测任务中,所提出的方案的分类质量出色。
translated by 谷歌翻译
随着社交媒体平台上的开放文本数据的最新扩散,在过去几年中,文本的情感检测(ED)受到了更多关注。它有许多应用程序,特别是对于企业和在线服务提供商,情感检测技术可以通过分析客户/用户对产品和服务的感受来帮助他们做出明智的商业决策。在这项研究中,我们介绍了Armanemo,这是一个标记为七个类别的7000多个波斯句子的人类标记的情感数据集。该数据集是从不同资源中收集的,包括Twitter,Instagram和Digikala(伊朗电子商务公司)的评论。标签是基于埃克曼(Ekman)的六种基本情感(愤怒,恐惧,幸福,仇恨,悲伤,奇迹)和另一个类别(其他),以考虑Ekman模型中未包含的任何其他情绪。除数据集外,我们还提供了几种基线模型,用于情绪分类,重点是最新的基于变压器的语言模型。我们的最佳模型在我们的测试数据集中达到了75.39%的宏观平均得分。此外,我们还进行了转移学习实验,以将我们提出的数据集的概括与其他波斯情绪数据集进行比较。这些实验的结果表明,我们的数据集在现有的波斯情绪数据集中具有较高的概括性。 Armanemo可在https://github.com/arman-rayan-sharif/arman-text-emotion上公开使用。
translated by 谷歌翻译
社交媒体在现代社会中尤其是在西方世界中的政策制定方面已经变得极其影响力(例如,48%的欧洲人每天或几乎每天都使用社交媒体)。 Twitter之类的平台使用户可以关注政客,从而使公民更多地参与政治讨论。同样,政客们使用Twitter来表达他们的观点,在当前主题上进行辩论,并促进其政治议程,以影响选民行为。先前的研究表明,传达负面情绪的推文可能会更频繁地转发。在本文中,我们试图分析来自不同国家的政客的推文,并探索他们的推文是否遵循相同的趋势。利用最先进的预训练的语言模型,我们对从希腊,西班牙和英国的成千上万的推文进行了情感分析,包括权威的行政部门。我们通过系统地探索和分析有影响力和不流行的推文之间的差异来实现这一目标。我们的分析表明,政治家的负面推文更广泛地传播,尤其是在最近的时代,并突出了情感和受欢迎程度相交的有趣趋势。
translated by 谷歌翻译
Hope is characterized as openness of spirit toward the future, a desire, expectation, and wish for something to happen or to be true that remarkably affects human's state of mind, emotions, behaviors, and decisions. Hope is usually associated with concepts of desired expectations and possibility/probability concerning the future. Despite its importance, hope has rarely been studied as a social media analysis task. This paper presents a hope speech dataset that classifies each tweet first into "Hope" and "Not Hope", then into three fine-grained hope categories: "Generalized Hope", "Realistic Hope", and "Unrealistic Hope" (along with "Not Hope"). English tweets in the first half of 2022 were collected to build this dataset. Furthermore, we describe our annotation process and guidelines in detail and discuss the challenges of classifying hope and the limitations of the existing hope speech detection corpora. In addition, we reported several baselines based on different learning approaches, such as traditional machine learning, deep learning, and transformers, to benchmark our dataset. We evaluated our baselines using weighted-averaged and macro-averaged F1-scores. Observations show that a strict process for annotator selection and detailed annotation guidelines enhanced the dataset's quality. This strict annotation process resulted in promising performance for simple machine learning classifiers with only bi-grams; however, binary and multiclass hope speech detection results reveal that contextual embedding models have higher performance in this dataset.
translated by 谷歌翻译
The shift of public debate to the digital sphere has been accompanied by a rise in online hate speech. While many promising approaches for hate speech classification have been proposed, studies often focus only on a single language, usually English, and do not address three key concerns: post-deployment performance, classifier maintenance and infrastructural limitations. In this paper, we introduce a new human-in-the-loop BERT-based hate speech classification pipeline and trace its development from initial data collection and annotation all the way to post-deployment. Our classifier, trained using data from our original corpus of over 422k examples, is specifically developed for the inherently multilingual setting of Switzerland and outperforms with its F1 score of 80.5 the currently best-performing BERT-based multilingual classifier by 5.8 F1 points in German and 3.6 F1 points in French. Our systematic evaluations over a 12-month period further highlight the vital importance of continuous, human-in-the-loop classifier maintenance to ensure robust hate speech classification post-deployment.
translated by 谷歌翻译
BERT,ROBERTA或GPT-3等复杂的基于注意力的语言模型的外观已允许在许多场景中解决高度复杂的任务。但是,当应用于特定域时,这些模型会遇到相当大的困难。诸如Twitter之类的社交网络就是这种情况,Twitter是一种不断变化的信息流,以非正式和复杂的语言编写的信息流,鉴于人类的重要作用,每个信息都需要仔细评估,即使人类也需要理解。通过自然语言处理解决该领域的任务涉及严重的挑战。当将强大的最先进的多语言模型应用于这种情况下,特定语言的细微差别用来迷失翻译。为了面对这些挑战,我们提出了\ textbf {bertuit},这是迄今为止针对西班牙语提出的较大变压器,使用Roberta Optimization进行了230m西班牙推文的大规模数据集进行了预培训。我们的动机是提供一个强大的资源,以更好地了解西班牙Twitter,并用于专注于该社交网络的应用程序,特别强调致力于解决该平台中错误信息传播的解决方案。对Bertuit进行了多个任务评估,并与M-Bert,XLM-Roberta和XLM-T进行了比较,该任务非常具有竞争性的多语言变压器。在这种情况下,使用应用程序显示了我们方法的实用性:一种可视化骗局和分析作者群体传播虚假信息的零击方法。错误的信息在英语以外的其他语言等平台上疯狂地传播,这意味着在英语说话之外转移时,变形金刚的性能可能会受到影响。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
通过匿名和可访问性,社交媒体平台促进了仇恨言论的扩散,提示在开发自动方法以识别这些文本时提高研究。本文探讨了使用各种深度神经网络模型架构(如长短期内存(LSTM)和卷积神经网络(CNN)的文本中性别歧视分类。这些网络与来自变压器(BERT)和Distilbert模型的双向编码器表示形式的传输学习一起使用,以及数据增强,以在社交中的性别歧视识别中对推文和GAB的数据集进行二进制和多种性别歧视分类Iberlef 2021中的网络(存在)任务。看到模型与竞争对手的比较,使用BERT和多滤波器CNN模型进行了最佳性能。数据增强进一步提高了多级分类任务的结果。本文还探讨了模型所做的错误,并讨论了由于标签的主观性和社交媒体中使用的自然语言的复杂性而自动对性别歧视的难度。
translated by 谷歌翻译
Content moderation is the process of screening and monitoring user-generated content online. It plays a crucial role in stopping content resulting from unacceptable behaviors such as hate speech, harassment, violence against specific groups, terrorism, racism, xenophobia, homophobia, or misogyny, to mention some few, in Online Social Platforms. These platforms make use of a plethora of tools to detect and manage malicious information; however, malicious actors also improve their skills, developing strategies to surpass these barriers and continuing to spread misleading information. Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems. In response to this recent ongoing issue, this paper presents an innovative approach to address this linguistic trend in social networks through the simulation of different content evasion techniques and a multilingual Transformer model for content evasion detection. In this way, we share with the rest of the scientific community a multilingual public tool, named "pyleetspeak" to generate/simulate in a customizable way the phenomenon of content evasion through automatic word camouflage and a multilingual Named-Entity Recognition (NER) Transformer-based model tuned for its recognition and detection. The multilingual NER model is evaluated in different textual scenarios, detecting different types and mixtures of camouflage techniques, achieving an overall weighted F1 score of 0.8795. This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content on social networks, making the fight against information disorders more effective.
translated by 谷歌翻译
已经开发了许多方法,以通过消除社交媒体平台的庸俗,令人反感和激烈的评论来监测现代岁月中的消极性传播。然而,存在相对较少的研究,这些研究会收敛于拥抱积极性,加强在线论坛中的支持性和放心内容。因此,我们建议创建英国kannada希望语音数据集,Kanhope并比较几个实验来基准数据集。 DataSet由6,176个用户生成的评论组成,代码混合kannada从YouTube刮擦并手动注释为轴承希望语音或不希望的演讲。此外,我们介绍了DC-BERT4HOPE,一种使用Kanhope的英语翻译进行额外培训的双通道模型,以促进希望语音检测。该方法实现了0.756的加权F1分数,更好的其他模型。从此,卡霍普旨在促进坎卡达的研究,同时促进研究人员,以鼓励,积极和支持的在线内容中务实的方法。
translated by 谷歌翻译
对于自然语言处理应用可能是有问题的,因为它们的含义不能从其构成词语推断出来。缺乏成功的方法方法和足够大的数据集防止了用于检测成语的机器学习方法的开发,特别是对于在训练集中不发生的表达式。我们提出了一种叫做小鼠的方法,它使用上下文嵌入来实现此目的。我们展示了一个新的多字表达式数据集,具有文字和惯用含义,并使用它根据两个最先进的上下文单词嵌入式培训分类器:Elmo和Bert。我们表明,使用两个嵌入式的深度神经网络比现有方法更好地执行,并且能够检测惯用词使用,即使对于训练集中不存在的表达式。我们展示了开发模型的交叉传输,并分析了所需数据集的大小。
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
仇恨言语检测模型的性能取决于对模型的训练数据集。现有的数据集大部分是由有限数量的实例或定义仇恨主题的仇恨域准备的。这阻碍了关于仇恨领域的大规模分析和转移学习。在这项研究中,我们构建了大规模的推文数据集,以用英语和低资源语言(土耳其语)进行仇恨言论检测,每个人都由每个标签的100k推文组成。我们的数据集设计为在五个域上分布的推文数量相等。统计测试支持的实验结果表明,基于变压器的语言模型的表现优于传统词袋和神经模型的英语至少5%,而土耳其语则优于大规模仇恨言语检测。该性能也可扩展到不同的训练规模,在使用20%的培训实例时,将回收98%的英语表现和土耳其语的97%。我们进一步研究了仇恨领域之间跨域转移的概括能力。我们表明,其他英语域平均有96%的目标域性能恢复,而土耳其语为92%。性别和宗教更成功地概括到其他领域,而体育运动最大。
translated by 谷歌翻译
研究表明,与自杀相关的新闻媒体内容的暴露与自杀率相关,具有一些内容特征可能具有有害和其他可能的保护作用。虽然有一些选定的特征存在良好的证据,但是一般缺少系统的大规模调查,特别是社交媒体数据。我们应用机器学习方法以自动标记大量的Twitter数据。我们开发了一种新的注释计划,将与自杀相关的推文分类为不同的消息类型和问题,以解决方案为中心的视角。然后,我们培训了包括多数分类器的机器学习模型的基准,这是一种基于词频率的方法(具有线性SVM的TF-IDF)和两个最先进的深层学习模型(BERT,XLNET)。这两个深入学习模型在两个分类任务中实现了最佳性能:首先,我们分类了六个主要内容类别,包括个人故事,包括自杀意图和尝试或应对,呼吁采取措施传播问题意识或预防相关信息,自杀病例的报告以及其他与自杀相关和偏离主题推文的报告。深度学习模型平均达到73%以上的准确度,遍布六个类别,F1分数为69%和85%,除了自杀意念和尝试类别(55%)。其次,在分离帖子中,在偏离主题推文中指的是实际自杀题,他们正确标记了大约88%的推文,双方达到了F1分数为93%和74%。这些分类性能与类似任务的最先进的性能相当。通过使数据标签更有效,这项工作能够对各种社交媒体内容的有害和保护作用进行自杀率和寻求帮助行为的有害和保护作用。
translated by 谷歌翻译
Numerous machine learning (ML) and deep learning (DL)-based approaches have been proposed to utilize textual data from social media for anti-social behavior analysis like cyberbullying, fake news detection, and identification of hate speech mainly for highly-resourced languages such as English. However, despite having a lot of diversity and millions of native speakers, some languages like Bengali are under-resourced, which is due to a lack of computational resources for natural language processing (NLP). Similar to other languages, Bengali social media contents also include images along with texts (e.g., multimodal memes are posted by embedding short texts into images on Facebook). Therefore, only the textual data is not enough to judge them since images might give extra context to make a proper judgement. This paper is about hate speech detection from multimodal Bengali memes and texts. We prepared the only multimodal hate speech dataset for-a-kind of problem for Bengali, which we use to train state-of-the-art neural architectures (e.g., Bi-LSTM/Conv-LSTM with word embeddings, ConvNets + pre-trained language models, e.g., monolingual Bangla BERT, multilingual BERT-cased/uncased, and XLM-RoBERTa) to jointly analyze textual and visual information for hate speech detection. Conv-LSTM and XLM-RoBERTa models performed best for texts, yielding F1 scores of 0.78 and 0.82, respectively. As of memes, ResNet-152 and DenseNet-161 models yield F1 scores of 0.78 and 0.79, respectively. As for multimodal fusion, XLM-RoBERTa + DenseNet-161 performed the best, yielding an F1 score of 0.83. Our study suggests that text modality is most useful for hate speech detection, while memes are moderately useful.
translated by 谷歌翻译