JPEG图像压缩算法是一种广泛使用的技术,用于降低边缘和云计算设置。但是,将这种有损压缩应用于深神网络处理的图像上,可能会导致明显的准确性降解。受课程学习范式的启发,我们提出了一种新颖的培训方法,称为课程预训练(CPT),用于人群计数压缩图像,这减轻了由于有损压缩而导致的准确性下降。我们通过对三个人群计数数据集的大量实验,两个人群计数DNN模型和各种压缩级别来验证方法的有效性。我们提出的训练方法对超参数并不过于敏感,并减少了误差,尤其是对于重压图像,最高为19.70%。
translated by 谷歌翻译
在整个智能城市中放置的相机捕获的相机捕获的图像和视频帧通常会通过网络传输到服务器,以通过深层神经网络处理各种任务。原始图像的传输,即没有任何形式的压缩,需要高带宽,并可能导致拥堵问题和传输延迟。使用有损图像压缩技术的使用可以降低图像的质量,从而导致准确性降解。在本文中,我们分析了应用低空损耗的图像压缩方法对视觉人群计数准确性的影响,并测量带宽降低和获得的准确性之间的权衡。
translated by 谷歌翻译
现代设备(例如智能手机,卫星和医疗设备)中的摄像机能够捕获非常高分辨率的图像和视频。这种高分辨率数据通常需要通过深度学习模型来处理癌症检测,自动化道路导航,天气预测,监视,优化农业过程和许多其他应用。使用高分辨率的图像和视频作为深度学习模型的直接输入,由于其参数数量大,计算成本,推理延迟和GPU内存消耗而造成了许多挑战。简单的方法(例如将图像调整为较低的分辨率大小)在文献中很常见,但是它们通常会显着降低准确性。文献中的几项作品提出了更好的替代方案,以应对高分辨率数据的挑战并提高准确性和速度,同时遵守硬件限制和时间限制。这项调查描述了这种高效的高分辨率深度学习方法,总结了高分辨率深度学习的现实应用程序,并提供了有关可用高分辨率数据集的全面信息。
translated by 谷歌翻译
将深度学习模型部署在具有有限计算资源的时间关键性应用程序中,例如在边缘计算系统和IoT网络中,是一项具有挑战性的任务,通常依赖于动态推理方法(例如早期退出)。在本文中,我们介绍了一种基于视觉变压器体系结构的新型架构,用于早期退出,以及一种微调策略,该策略与传统方法相比,在引入较少的开销的同时,显着提高了早期出口分支的准确性。通过有关图像和音频分类以及视听人群计数的广泛实验,我们表明我们的方法在分类和回归问题以及单模式设置中都适用于分类和回归问题。此外,我们引入了一种新颖的方法,用于在视听数据分析的早期出口中整合音频和视觉方式,这可能导致更细粒度的动态推断。
translated by 谷歌翻译
人群计数是公共场所情境意识的有效工具。使用图像和视频进行自动人群计数是一个有趣但充满挑战的问题,在计算机视觉中引起了极大的关注。在过去的几年中,已经开发了各种深度学习方法来实现最先进的表现。随着时间的流逝,这些方法在许多方面发生了变化,例如模型架构,输入管道,学习范式,计算复杂性和准确性提高等。在本文中,我们对人群计数领域中最重要的贡献进行了系统和全面的评论。 。尽管对该主题的调查很少,但我们的调查是最新的,并且在几个方面都不同。首先,它通过模型体系结构,学习方法(即损失功能)和评估方法(即评估指标)对最重要的贡献进行了更有意义的分类。我们选择了杰出和独特的作品,并排除了类似的作品。我们还通过基准数据集对著名人群计数模型进行分类。我们认为,这项调查可能是新手研究人员了解随着时间的推移和当前最新技术的逐步发展和贡献的好资源。
translated by 谷歌翻译
The counting task, which plays a fundamental rule in numerous applications (e.g., crowd counting, traffic statistics), aims to predict the number of objects with various densities. Existing object counting tasks are designed for a single object class. However, it is inevitable to encounter newly coming data with new classes in our real world. We name this scenario as \textit{evolving object counting}. In this paper, we build the first evolving object counting dataset and propose a unified object counting network as the first attempt to address this task. The proposed model consists of two key components: a class-agnostic mask module and a class-increment module. The class-agnostic mask module learns generic object occupation prior via predicting a class-agnostic binary mask (e.g., 1 denotes there exists an object at the considering position in an image and 0 otherwise). The class-increment module is used to handle new coming classes and provides discriminative class guidance for density map prediction. The combined outputs of class-agnostic mask module and image feature extractor are used to predict the final density map. When new classes come, we first add new neural nodes into the last regression and classification layers of this module. Then, instead of retraining the model from scratch, we utilize knowledge distilling to help the model remember what have already learned about previous object classes. We also employ a support sample bank to store a small number of typical training samples of each class, which are used to prevent the model from forgetting key information of old data. With this design, our model can efficiently and effectively adapt to new coming classes while keeping good performance on already seen data without large-scale retraining. Extensive experiments on the collected dataset demonstrate the favorable performance.
translated by 谷歌翻译
This paper aims to develop a method than can accurately estimate the crowd count from an individual image with arbitrary crowd density and arbitrary perspective. To this end, we have proposed a simple but effective Multi-column Convolutional Neural Network (MCNN) architecture to map the image to its crowd density map. The proposed MCNN allows the input image to be of arbitrary size or resolution. By utilizing filters with receptive fields of different sizes, the features learned by each column CNN are adaptive to variations in people/head size due to perspective effect or image resolution. Furthermore, the true density map is computed accurately based on geometry-adaptive kernels which do not need knowing the perspective map of the input image. Since exiting crowd counting datasets do not adequately cover all the challenging situations considered in our work, we have collected and labelled a large new dataset that includes 1198 images with about 330,000 heads annotated. On this challenging new dataset, as well as all existing datasets, we conduct extensive experiments to verify the effectiveness of the proposed model and method. In particular, with the proposed simple MCNN model, our method outperforms all existing methods. In addition, experiments show that our model, once trained on one dataset, can be readily transferred to a new dataset.
translated by 谷歌翻译
Deep learning models require an enormous amount of data for training. However, recently there is a shift in machine learning from model-centric to data-centric approaches. In data-centric approaches, the focus is to refine and improve the quality of the data to improve the learning performance of the models rather than redesigning model architectures. In this paper, we propose CLIP i.e., Curriculum Learning with Iterative data Pruning. CLIP combines two data-centric approaches i.e., curriculum learning and dataset pruning to improve the model learning accuracy and convergence speed. The proposed scheme applies loss-aware dataset pruning to iteratively remove the least significant samples and progressively reduces the size of the effective dataset in the curriculum learning training. Extensive experiments performed on crowd density estimation models validate the notion behind combining the two approaches by reducing the convergence time and improving generalization. To our knowledge, the idea of data pruning as an embedded process in curriculum learning is novel.
translated by 谷歌翻译
深度学习取得了长足的进步,用于图像中的对象检测。对象检测的检测准确性和计算成本取决于图像的空间分辨率,这可能会受到相机和存储注意事项的约束。压缩通常是通过减少空间或幅度分辨率或有时两者都对性能的众所周知的影响来实现的。检测精度还取决于感兴趣的对象与摄像机的距离。我们的工作研究了空间和振幅分辨率以及对象距离对物体检测准确性和计算成本的影响。我们开发了Yolov5(ra-Yolo)的分辨率 - 自适应变体,该变体基于输入图像的空间分辨率,它在特征金字塔和检测头中变化。为了训练和评估这种新方法,我们通过结合TJU和Eurocity数据集的图像来创建具有不同空间和振幅分辨率的图像数据集,并通过应用空间调整和压缩来生成不同的分辨率。我们首先表明Ra-Yolo在各种空间分辨率上实现了检测准确性和推理时间之间的良好权衡。然后,我们使用拟议的RA-YOLO模型评估空间和振幅分辨率对物体检测准确性的影响。我们证明,导致最高检测精度的最佳空间分辨率取决于“耐受性”图像大小。我们进一步评估了对象到摄像机对检测准确性的影响,并表明较高的空间分辨率可实现更大的检测范围。这些结果为选择图像空间分辨率和压缩设置提供了重要的指南,这些分辨率和压缩设置基于可用的带宽,存储,所需的推理时间和/或所需的检测范围,在实际应用中。
translated by 谷歌翻译
Video surveillance using drones is both convenient and efficient due to the ease of deployment and unobstructed movement of drones in many scenarios. An interesting application of drone-based video surveillance is to estimate crowd densities (both pedestrians and vehicles) in public places. Deep learning using convolution neural networks (CNNs) is employed for automatic crowd counting and density estimation using images and videos. However, the performance and accuracy of such models typically depend upon the model architecture i.e., deeper CNN models improve accuracy at the cost of increased inference time. In this paper, we propose a novel crowd density estimation model for drones (DroneNet) using Self-organized Operational Neural Networks (Self-ONN). Self-ONN provides efficient learning capabilities with lower computational complexity as compared to CNN-based models. We tested our algorithm on two drone-view public datasets. Our evaluation shows that the proposed DroneNet shows superior performance on an equivalent CNN-based model.
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
We propose a network for Congested Scene Recognition called CSRNet to provide a data-driven and deep learning method that can understand highly congested scenes and perform accurate count estimation as well as present highquality density maps. The proposed CSRNet is composed of two major components: a convolutional neural network (CNN) as the front-end for 2D feature extraction and a dilated CNN for the back-end, which uses dilated kernels to deliver larger reception fields and to replace pooling operations. CSRNet is an easy-trained model because of its pure convolutional structure. We demonstrate CSRNet on four datasets (ShanghaiTech dataset, the UCF CC 50 dataset, the WorldEXPO'10 dataset, and the UCSD dataset) and we deliver the state-of-the-art performance. In the Shang-haiTech Part B dataset, CSRNet achieves 47.3% lower Mean Absolute Error (MAE) than the previous state-of-theart method. We extend the targeted applications for counting other objects, such as the vehicle in TRANCOS dataset. Results show that CSRNet significantly improves the output quality with 15.4% lower MAE than the previous state-ofthe-art approach.
translated by 谷歌翻译
单图像人群计数是一个充满挑战的计算机视觉问题,在公共安全,城市规划,交通管理等方面进行了广泛的应用。随着深度学习技术的最新发展,近年来,人群的数量引起了很多关注并取得了巨大的成功。这项调查是为了通过系统审查和总结该地区的200多件作品来提供有关基于深度学习的人群计数技术的最新进展的全面摘要。我们的目标是提供最新的评论。在最近的方法中,并在该领域教育新研究人员的设计原理和权衡。在介绍了公开可用的数据集和评估指标之后,我们通过对三个主要的设计模块进行了详细比较来回顾最近的进展:深度神经网络设计,损失功能和监督信号。我们使用公共数据集和评估指标研究和比较方法。我们以一些未来的指示结束了调查。
translated by 谷歌翻译
指导可学习的参数优化的一种吸引人的方法,例如特征图,是全球关注,它以成本的一小部分启发了网络智能。但是,它的损失计算过程仍然很短:1)我们只能产生一维的“伪标签”,因为该过程中涉及的人工阈值不健壮; 2)等待损失计算的注意力必然是高维的,而通过卷积减少它将不可避免地引入其他可学习的参数,从而使损失的来源混淆。为此,我们设计了一个基于软磁性注意的简单但有效的间接注意力优化(IIAO)模块,该模块将高维注意图转换为数学意义上的一维功能图,以通过网络中途进行损失计算,同时自动提供自适应多尺度融合以配备金字塔模块。特殊转化产生相对粗糙的特征,最初,区域的预测性谬误性随着人群的密度分布而变化,因此我们定制区域相关损失(RCLOSS)以检索连续错误的错误区域和平滑的空间信息。广泛的实验证明,我们的方法在许多基准数据集中超过了先前的SOTA方法。
translated by 谷歌翻译
在本文中,我们专注于人群本地化任务,这是人群分析的关键主题。大多数基于回归的方法都利用卷积神经网络(CNN)回归密度图,该密度图无法准确地定位在极度密集的场景中,这两个至关重要的原因是:1)密度图由一系列模糊的高斯斑点组成,2)密度图的致密区域中存在严重的重叠。为了解决这个问题,我们为人群本地化任务提出了一个新颖的焦点反向变换(FIDT)图。与密度图相比,FIDT地图准确地描述了人们的位置,而不会在密集区域重叠。基于FIDT地图,得出了局部Maxima-detection-Strategy(LMDS),以有效地为每个人提取中心点。此外,我们引入了独立的SSIM(I-SSIM)损失,以使模型倾向于学习局部结构信息,从而更好地识别局部最大值。广泛的实验表明,提出的方法报告在六个人群数据集和一个车辆数据集上的最先进的本地化性能。此外,我们发现所提出的方法在负面和极密密集的场景上显示出优异的鲁棒性,这进一步验证了FIDT地图的有效性。该代码和模型将在https://github.com/dk-liang/fidtm上找到。
translated by 谷歌翻译
近年来,人群计数研究取得了重大进展。然而,随着人群中存在具有挑战性的规模变化和复杂的场景,传统的卷积网络和最近具有固定大小的变压器架构都不能良好地处理任务。为了解决这个问题,本文提出了一个场景 - 自适应关注网络,称为Saanet。首先,我们设计了可变形的变压器骨干内的可变形关注,从而了解具有可变形采样位置和动态注意力的自适应特征表示。然后,我们提出了多级特征融合和计数专注特征增强模块,以加强全局图像上下文下的特征表示。学习的陈述可以参加前景,并适应不同的人群。我们对四个具有挑战性的人群计数基准进行广泛的实验,表明我们的方法实现了最先进的性能。特别是,我们的方法目前在NWPU-Crowd基准的公共排行榜上排名第一。我们希望我们的方法可能是一个强大的基线,以支持人群计数的未来研究。源代码将被释放到社区。
translated by 谷歌翻译
主流人群计数方法通常利用卷积神经网络(CNN)回归密度图,需要点级注释。但是,用一点点注释每个人是一个昂贵且费力的过程。在测试阶段,未考虑点级注释来评估计数精度,这意味着点级注释是冗余的。因此,希望开发仅依赖计数级注释的弱监督计数方法,这是一种更经济的标签方式。当前的弱监督计数方法采用了CNN来通过图像计数范式回归人群的总数。但是,对于上下文建模的接受场有限是这些基于CNN的弱监督法的内在局限性。因此,在现实世界中的应用有限的情况下,这些方法无法实现令人满意的性能。变压器是自然语言处理(NLP)中流行的序列到序列预测模型,其中包含一个全球接收场。在本文中,我们提出了transercroderd,从基于变压器的序列到计数的角度来重新制定了弱监督的人群计数问题。我们观察到,所提出的译者可以使用变压器的自发机制有效地提取语义人群信息。据我们所知,这是第一项采用纯变压器进行人群计算研究的工作。五个基准数据集的实验表明,与所有基于弱的CNN的计数方法相比,所提出的transercroud的性能优于较高的性能,并且与某些流行的完全监督的计数方法相比,基于CNN的计数方法和提高了竞争激烈的计数性能。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
Density estimation is one of the most widely used methods for crowd counting in which a deep learning model learns from head-annotated crowd images to estimate crowd density in unseen images. Typically, the learning performance of the model is highly impacted by the accuracy of the annotations and inaccurate annotations may lead to localization and counting errors during prediction. A significant amount of works exist on crowd counting using perfectly labelled datasets but none of these explore the impact of annotation errors on the model accuracy. In this paper, we investigate the impact of imperfect labels (both noisy and missing labels) on crowd counting accuracy. We propose a system that automatically generates imperfect labels using a deep learning model (called annotator) which are then used to train a new crowd counting model (target model). Our analysis on two crowd counting models and two benchmark datasets shows that the proposed scheme achieves accuracy closer to that of the model trained with perfect labels showing the robustness of crowd models to annotation errors.
translated by 谷歌翻译
The recent trend in multiple object tracking (MOT) is jointly solving detection and tracking, where object detection and appearance feature (or motion) are learned simultaneously. Despite competitive performance, in crowded scenes, joint detection and tracking usually fail to find accurate object associations due to missed or false detections. In this paper, we jointly model counting, detection and re-identification in an end-to-end framework, named CountingMOT, tailored for crowded scenes. By imposing mutual object-count constraints between detection and counting, the CountingMOT tries to find a balance between object detection and crowd density map estimation, which can help it to recover missed detections or reject false detections. Our approach is an attempt to bridge the gap of object detection, counting, and re-Identification. This is in contrast to prior MOT methods that either ignore the crowd density and thus are prone to failure in crowded scenes, or depend on local correlations to build a graphical relationship for matching targets. The proposed MOT tracker can perform online and real-time tracking, and achieves the state-of-the-art results on public benchmarks MOT16 (MOTA of 77.6), MOT17 (MOTA of 78.0%) and MOT20 (MOTA of 70.2%).
translated by 谷歌翻译