已知历史和未来的上下文信息对于准确的声学建模很重要。但是,获取未来的上下文会带来流式ASR的延迟。在本文中,我们提出了一个新的框架 - 块,模拟未来的上下文和解码(Cuside)以进行流语言识别。引入了一个新的仿真模块,以递归地模拟未来的上下文帧,而无需等待未来的上下文。使用自我监督的损失与ASR模型共同训练模拟模块;ASR模型通过通常的ASR损失(例如我们实验中使用的CTC-CRF)进行了优化。实验表明,与使用真实的未来框架作为正确的上下文相比,使用模拟的未来上下文可以大大降低延迟,同时保持识别精度。使用Cuside,我们在Aishell-1数据集上获得了新的最新流媒体ASR结果。
translated by 谷歌翻译
在本文中,我们提出了一种新的双通方法来统一一个模型中的流和非流媒体端到端(E2E)语音识别。我们的型号采用混合CTC /注意架构,其中编码器中的构装层被修改。我们提出了一种基于动态的块的注意力策略,以允许任意右上下文长度。在推理时间,CTC解码器以流式方式生成n最佳假设。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。这种有效的备用过程导致句子级延迟非常小。我们在开放的170小时Aishell-1数据集上的实验表明,所提出的方法可以简单有效地统一流和非流化模型。在Aishell-1测试集上,与标准的非流式变压器相比,我们的统一模型在非流式ASR中实现了5.60%的相对字符错误率(CER)减少。同一模型在流式ASR系统中实现了5.42%的CER,640ms延迟。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
统一的流和非流式的双通(U2)用于语音识别的端到端模型在流传输能力,准确性,实时因素(RTF)和延迟方面表现出很大的性能。在本文中,我们呈现U2 ++,U2的增强版本,进一步提高了准确性。 U2 ++的核心思想是在训练中同时使用标签序列的前向和向后信息来学习更丰富的信息,并在解码时结合前向和后向预测以提供更准确的识别结果。我们还提出了一种名为SPECSUB的新数据增强方法,以帮助U2 ++模型更准确和强大。我们的实验表明,与U2相比,U2 ++在训练中显示了更快的收敛,更好地鲁棒性对解码方法,以及U2上的一致5 \%-8 \%字错误率降低增益。在Aishell-1的实验中,我们通过u2 ++实现了一个4.63 \%的字符错误率(cer),其中没有流媒体设置和5.05 \%,具有320ms延迟的流设置。据我们所知,5.05 \%是Aishell-1测试集上的最佳发布的流媒体结果。
translated by 谷歌翻译
越来越有兴趣将流和全文自动语音识别(ASR)网络统一到单个端到端ASR模型中,以简化两种用例的模型培训和部署。在现实世界中的ASR应用程序中,流媒体ASR模型通常在更多的存储和计算约束(例如,在嵌入式设备上)进行操作,而不是任何服务器端的全文模型。由Omni-Sparsity Supernet训练的最新进展激发,该训练在一个单个模型中共同优化了多个子网,该工作旨在共同学习紧凑的稀疏稀疏式磁性流媒体流动ASR模型,以及一个大型密度服务器非流动模型,在一个超级网。接下来,我们提出,在两种WAV2VEC 2.0自制学习和监督的ASR微调上进行超网训练不仅可以基本上改善先前工作中所示的大型非流式模型,还可以改善紧凑的稀疏流流媒体流模型。
translated by 谷歌翻译
最近,我们提供了Wenet,这是一种面向生产的端到端语音识别工具包,它引入了统一的两通道(U2)框架和内置运行时,以解决单个中的流和非流传输模式。模型。为了进一步提高ASR性能并促进各种生产要求,在本文中,我们提出了Wenet 2.0,并提供四个重要的更新。 (1)我们提出了U2 ++,这是一个带有双向注意解码器的统一的两次通行框架,其中包括通过左右注意力解码器的未来上下文信息,以提高共享编码器的代表性和在夺回阶段的表现。 (2)我们将基于N-Gram的语言模型和基于WFST的解码器引入WENET 2.0,从而促进了在生产方案中使用丰富的文本数据。 (3)我们设计了一个统一的上下文偏见框架,该框架利用特定于用户的上下文(例如联系人列表)为生产提供快速适应能力,并提高了使用LM和没有LM场景的ASR准确性。 (4)我们设计了一个统一的IO,以支持大规模数据进行有效的模型培训。总而言之,全新的WENET 2.0可在各种Corpora上的原始WENET上取得高达10 \%的相对识别性能提高,并提供了一些重要的以生产为导向的功能。
translated by 谷歌翻译
在本文中,我们提出了一个名为Wenet的开源,生产第一和生产准备的语音识别工具包,其中实现了一种新的双通方法,以统一流传输和非流媒体端到端(E2E)语音识别单一模型。 WENET的主要动机是缩放研究与E2E演示识别模型的生产之间的差距。 Wenet提供了一种有效的方法,可以在几个真实情景中运送ASR应用程序,这是其他开源E2E语音识别工具包的主要差异和优势。在我们的工具包中,实现了一种新的双通方法。我们的方法提出了一种基于动态的基于块的关注策略,变压器层,允许任意右上下文长度修改在混合CTC /注意架构中。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。我们在使用WENET上的Aishell-1数据集上的实验表明,与标准的非流式变压器相比,我们的模型在非流式ASR中实现了5.03 \%相对字符的误差率(CER)。在模型量化之后,我们的模型执行合理的RTF和延迟。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
流动自动语音识别(ASR)模型更为流行,适合基于语音的应用程序。但是,非流入模型在查看整个音频上下文时提供了更好的性能。为了利用语音搜索等流媒体应用程序中非流游模型的好处,它通常在第二通过重新评分模式下使用。使用蒸汽模型生成的候选假设是使用非流程模型重新评分的。在这项工作中,我们在独立和重新评分模式的Flipkart语音搜索任务上评估了基于注意力的端到端ASR模型。这些模型基于收听拼写(LAS)编码器编码器架构。我们基于LSTM,变压器和构象异构体进行不同的编码器变化。我们将这些模型的延迟要求与它们的性能进行比较。总体而言,我们表明,变压器模型提供了可接受的延迟要求。我们报告的相对改善约为16%,第二次通过LAS重新评分,延迟开销低于5ms。我们还强调了CNN前端使用变压器体系结构的重要性,以达到可比的单词错误率(WER)。此外,我们观察到,在第二次通过重新评分模式下,所有编码器都提供了相似的好处,而在独立文本生成模式下,性能差异很明显。
translated by 谷歌翻译
语言识别对于自动语音识别(ASR)中的许多下游任务至关重要,并且有益于将多语言端到端的ASR集成为附加任务。在本文中,我们建议通过集成每帧语言标识符(LID)预测器来修改基于层压编码器的复发神经网络传感器(RNN-T)模型的结构。带有级联编码器的RNN-T可以使用不右键的第一通用解码来实现较低延迟的流动ASR,并使用二频道解码使用更长的右文本实现较低的单词错误率(WERS)。通过利用当前文章中的这种差异和统计池的流传输实现,该建议的方法可以实现准确的流盖预测,而几乎没有额外的测试时间成本。语音搜索数据集的实验结果具有9个语言语言位置,表明所提出的方法平均达到96.2%的盖子预测准确性,而与输入中的Oracle盖相同的二次通用方法。
translated by 谷歌翻译
本文提出了代币级别的序列化输出训练(T-SOT),这是流式传输多对话者自动语音识别(ASR)的新型框架。与使用多个输出分支的现有流媒体多对话者ASR模型不同,T-SOT模型只有一个单个输出分支,该分支基于其排放时间生成多个扬声器的识别令牌(例如,单词,子字)。引入了指示“虚拟”输出通道更改的特殊令牌,以跟踪重叠的话语。与先前的流媒体ASR模型相比,T-SOT模型具有较低的推理成本和更简单的模型体系结构的优点。此外,在我们对LibrisPeechMix和Librics数据集的实验中,基于T-SOT的变压器换能器模型可实现最新的单词错误率,从而有很大的差距。对于非重叠的语音,T-SOT模型在精度和计算成本方面与单调的ASR模型相提并论,为单个单词和多对话者方案部署一个模型打开了大门。
translated by 谷歌翻译
Recognizing a word shortly after it is spoken is an important requirement for automatic speech recognition (ASR) systems in real-world scenarios. As a result, a large body of work on streaming audio-only ASR models has been presented in the literature. However, streaming audio-visual automatic speech recognition (AV-ASR) has received little attention in earlier works. In this work, we propose a streaming AV-ASR system based on a hybrid connectionist temporal classification (CTC)/attention neural network architecture. The audio and the visual encoder neural networks are both based on the conformer architecture, which is made streamable using chunk-wise self-attention (CSA) and causal convolution. Streaming recognition with a decoder neural network is realized by using the triggered attention technique, which performs time-synchronous decoding with joint CTC/attention scoring. For frame-level ASR criteria, such as CTC, a synchronized response from the audio and visual encoders is critical for a joint AV decision making process. In this work, we propose a novel alignment regularization technique that promotes synchronization of the audio and visual encoder, which in turn results in better word error rates (WERs) at all SNR levels for streaming and offline AV-ASR models. The proposed AV-ASR model achieves WERs of 2.0% and 2.6% on the Lip Reading Sentences 3 (LRS3) dataset in an offline and online setup, respectively, which both present state-of-the-art results when no external training data are used.
translated by 谷歌翻译
我们提出了一种简单有效的自我监督学习方法,以供语音识别。该方法以随机预测量化器生成的离散标签的形式学习了一个模型,以预测蒙版的语音信号。尤其是量化器的语音输入带有随机初始化的矩阵,并在随机限制的代码簿中进行最近的邻居查找。在自我监督的学习过程中,矩阵和密码簿均未更新。由于未对随机预测量化器进行训练,并与语音识别模型分开,因此该设计使该方法具有灵活性,并且与通用语音识别体系结构兼容。在LibrisPeech上,我们的方法与以前的工作相比,使用非流式模型获得了与以前的工作相似的单词率,并且比WAV2VEC 2.0和WAP2VEC 2.0和w2v-bert提供了较低的单词率率和延迟。在多语言任务上,该方法还提供了与WAV2VEC 2.0和W2V-bert的显着改进。
translated by 谷歌翻译
我们介绍BERTPHONE,一个在大型语音上培训的变压器编码器,输出可以用于扬声器和语言识别的语音感知的上下文表示向量。这是通过对两个目标的培训来实现的:首先是通过调整伯特对连续领域的启发,涉及掩蔽输入框架的跨度并重建用于声学表示学习的整个序列;其次,由ASR的瓶颈特征成功的启发是应用于音素标签的序列级CTC损失,用于语音表示学习。我们预留了两种BERTPHONE型号(一个在FISHER上,一个在TED-lium上),并用它们用作两个任务的X-Vector-Sique DNN中的特征提取器。我们达到最先进的$ C _ {\ TEXT {AVG}} $ 6.16就具有挑战性的LRE07 3SEC封闭式语言识别任务。在Fisher和VoxceleB扬声器识别任务上,我们在培训BertPhone向量而不是MFCC时,我们看到扬声器EER的相对减少18%。通常,BERTPHONE在同一数据上优于先前的语音预制方法。我们在https://github.com/awslabs/speech -representations释放我们的代码和模型。
translated by 谷歌翻译
神经传感器已被广泛用于自动语音识别(ASR)。在本文中,我们将其介绍给流端到端语音翻译(ST),该语音旨在将音频信号直接转换为其他语言的文本。与执行ASR之后的级联ST相比,基于文本的机器翻译(MT),拟议的变压器传感器(TT)基于ST模型大大降低了推理潜伏期,利用语音信息并避免了从ASR到MT的错误传播。为了提高建模能力,我们提出了TT中联合网络的注意集合。此外,我们将基于TT的ST扩展到多语言ST,该ST同时生成多种语言的文本。大规模5万(k)小时的伪标记训练集的实验结果表明,基于TT的ST不仅显着减少了推理时间,而且还优于非流式级联ST进行英语 - 德语翻译。
translated by 谷歌翻译
本文介绍了流媒体和非流定向晶体翻译的统一端到端帧工作。虽然非流媒体语音翻译的培训配方已经成熟,但尚未建立流媒体传播的食谱。在这项工作中,WEFOCUS在开发一个统一的模型(UNIST),它从基本组成部分的角度支持流媒体和非流媒体ST,包括培训目标,注意机制和解码政策。对最流行的语音到文本翻译基准数据集,MERE-C的实验表明,与媒体ST的BLEU评分和延迟度量有更好的折衷和液化标准端到端基线和级联模型。我们将公开提供我们的代码和评估工具。
translated by 谷歌翻译
我们提出了基于流的端到端自动语音识别(ASR)体系结构,该体系结构通过计算成本摊销来实现有效的神经推断。我们的体系结构在推理时间动态创建稀疏的计算途径,从而选择性地使用计算资源在整个解码过程中,从而使计算中的大幅降低,对准确性的影响最小。完全可区分的体系结构是端到端训练的,随附的轻巧仲裁器机制在帧级别运行,以在每个输入上做出动态决策,同时使用可调损耗函数来正规化针对预测性能的整体计算水平。我们使用在LiblisPeech数据上进行的计算摊销变压器变形器(T-T)模型报告了实验的经验结果。我们的最佳模型可以实现60%的计算成本降低,而相对单词错误率仅3%(WER)增加。
translated by 谷歌翻译
最近,卷积增强的变压器(构象异构体)在自动语音识别(ASR)中显示出令人鼓舞的结果,表现优于先前发表的最佳变压器传感器。在这项工作中,我们认为编码器和解码器中每个块的输出信息并不完全包容,换句话说,它们的输出信息可能是互补的。我们研究如何以参数效率的方式利用每个块的互补信息,并且可以预期这可能会导致更强的性能。因此,我们提出了刻板的变压器以进行语音识别,名为BlockFormer。我们已经实现了两个块集合方法:块输出的基本加权总和(基本WSBO),以及挤压和激气模块到块输出的加权总和(SE-WSBO)。实验已经证明,阻滞剂在Aishell-1上大大优于基于最新的构象模型,我们的模型在不使用语言模型的情况下达到了4.35 \%的CER,并且在4.10 \%上具有外部语言模型的4.10 \%测试集。
translated by 谷歌翻译
RNN-T模型由于其在线流媒体模式下运营的竞争力和能力,因此在文献和商业系统中广受欢迎。在这项工作中,我们进行了一项广泛的研究,比较了单调和原始RNN-T模型的几种预测网络体系结构。我们根据普通的最新构象编码器比较4种类型的预测网络,并在LibrisPeech和内部医学对话数据集上获得报告结果。我们的研究涵盖了离线批处理模式和在线流媒体方案。与以前的一些作品相反,我们的结果表明,当用作预测网络以及构象异构体编码器时,变压器并不总是胜过LSTM。受分数启发的启发,我们提出了一个新的简单预测网络体系结构N-CONCAT,它在我们在线流式传输基准测试中的表现优于其他。变压器和N-Gram降低的体系结构的表现非常相似,但在先前的上下文方面具有一些重要的不同行为。总体而言,与LSTM基线相比,我们获得了多达4.1%的相对相对改善,同时将预测网络参数降低了几乎数量级(8.4倍)。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译