Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%, specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment.
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
背景:12个引线ECG是心血管疾病的核心诊断工具。在这里,我们描述并分析了一个集成的深度神经网络架构,从12个引导eCG分类了24个心脏异常。方法:我们提出了挤压和激发reset,以自动学习来自12个引主ECG的深度特征,以识别24个心脏病。在最终完全连接的层中,随着年龄和性别特征增强了深度特征。使用约束网格搜索设置每个类的输出阈值。为了确定为什么该模型的预测不正确,两个专家诊所人员独立地解释了一组关于左轴偏差的一次无序的ECG。结果:采用定制加权精度度量,我们达到了0.684的5倍交叉验证得分,灵敏度和特异性分别为0.758和0.969。我们在完整的测试数据中得分0.520,并在官方挑战排名中排名第21中。在一系列被错误分类的心电图中,两个临床医生和训练标签之间的协议差(临床医生1:Kappa = -0.057,临床医生2:Kappa = -0.159)。相比之下,临床医生之间的协议非常高(Kappa = 0.92)。讨论:与在相同数据上培训的模型相比,所提出的预测模型很好地对验证和隐藏的测试数据进行了良好。我们还发现培训标签的相当不一致,这可能会阻碍更准确的模型的开发。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
目的:确定逼真,但是电磁图的计算上有效模型可用于预先列车,具有广泛的形态和特定于给定条件的形态和异常 - T波段(TWA)由于创伤后应激障碍,或重点 - 在稀有人的小型数据库上显着提高了性能。方法:使用先前经过验证的人工ECG模型,我们生成了180,000人的人工ECG,有或没有重要的TWA,具有不同的心率,呼吸率,TWA幅度和ECG形态。在70,000名患者中培训的DNN进行分类为25种不同的节奏,将输出层修改为二进制类(TWA或NO-TWA,或等效,PTSD或NO-PTSD),并对人工ECG进行转移学习。在最终转移学习步骤中,DNN在ECG的培训和交叉验证,从12个PTE和24个控件,用于使用三个数据库的所有组合。主要结果:通过进行转移学习步骤,使用预先培训的心律失常DNN,人工数据和真实的PTSD相关的心电图数据,发现了最佳性能的方法(AUROC = 0.77,精度= 0.72,F1-SCATE = 0.64) 。从训练中删除人工数据导致性能的最大下降。从培训中取出心律失常数据提供了适度但重要的,表现下降。最终模型在人工数据上显示出在性能下没有显着下降,表明没有过度拟合。意义:在医疗保健中,通常只有一小部分高质量数据和标签,或更大的数据库,质量较低(和较差的相关)标签。这里呈现的范式,涉及基于模型的性能提升,通过在大型现实人工数据库和部分相关的真实数据库上传输学习来提供解决方案。
translated by 谷歌翻译
心血管疾病是一个大的全球医疗保健问题;症状通常突然存在,最小的警告。心电图(ECG)是一种快速,简单可靠,通过测量通过皮肤上的电极记录的电极来评估心脏健康的方法。 ECG经常需要通过心脏病专家分析,花时间可以花在改善患者护理和结果上。因此,已经提出了使用机器学习的自动ECG分类系统,可以学习ECG功能之间的复杂交互,并使用它来检测异常。然而,为此目的构建的算法经常无法概括到解开数据,报告最初令人印象深刻的结果,在应用于新环境时急剧下降。此外,机器学习算法遭受“黑匣子”问题,其中难以确定如何做出决定。这对医疗保健的应用至关重要,因为临床医生需要能够验证评估过程以信任算法。本文提出了一种用于在MIT-BIH心律失常数据集中的每个类中可视化模型决策的方法,使用完整类的平均调整显着图来确定正在学习的模式。我们通过基于最先进的模型构建两种算法来实现这一点。本文突出了这些地图如何用于在模型中找到可能影响概括性和模型性能的模型中的问题。比较完整类的显着性图给出了模型中混淆变量或其他偏差的总体印象,而不同于在ECG-By-ECG基础上比较显着图时会突出显示的内容。
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
心脏病是当今世界的重大挑战之一,以及全球许多死亡的主要原因之一。最近的机器学习(ML)应用程序的进步表明,使用心电图(ECG)和患者数据,在早期阶段检测心脏病是可行的。然而,ECG和患者数据往往是不平衡的,这最终引起了传统ML的挑战,无偏见。多年来,许多研究人员和从业者都公开了几个数据级别和算法级别解决方案。为了提供更广泛的现有文献,本研究采用系统的文献综述(SLR)方法来揭示与心脏病预测中的不平衡数据相关的挑战。在此之前,我们使用从2012年和11月15日至11月15日之间的知名期刊获得的451个参考文献进行了荟萃分析。对于深入的分析,考虑到以下因素,考虑了49个参考文献,考虑到以下因素:心脏病类型,算法,应用程序和解决方案。我们的SLR研究表明,当时当前的方法在处理不平衡数据时遇到各种打开问题/问题,最终阻碍其实际适用性和功能。
translated by 谷歌翻译
在初步诊断和分析心脏缺陷,ECG信号发挥着重要作用。本文介绍了使用噪声滤波,独特的心电图特征和基于机器学习的分类器模型预测心室性心动过速心律失常的模型。在信号特征提取之前,我们可以拒绝并使信号脱落以消除正确检测特征的噪声。在提取必要的特征之后,测量与这些特征相关的必要参数。使用这些参数,我们使用的是一种高效的多键级分类器模型,使用机器学习方法可以有效地分类不同类型的心室性心动过速心律失常。我们的结果表明,基于逻辑回归和决策树的模型是用于检测心室性心动过速的最有效的机器学习模型。为了诊断心脏病并为患者寻找护理,需要早期,可靠的不同类型心律失常的诊断。通过实施我们提出的方法,这项工作涉及减少与心室性心动过速有关的关键信号的错误分类问题的问题。实验结果表明了我们提出的算法的令人满意的增强,并表现出高度的恢复力。通过这种帮助,医生可以提前评估这种患者的这种心律失常,并在适当的时间作出正确的决定。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
心电图(ECG)是一种简单的非侵入性措施,用于识别与心律失常相关的问题,例如称为心律失常的不规则心跳。尽管人工智能和机器学习被用于广泛的与医疗保健相关的应用程序和数据集中,但近年来已经提出了许多使用深度学习方法的心律失常分类器。但是,可以从中构建和评估机器学习模型的可用数据集的尺寸通常很小,并且缺乏通知的公共ECG数据集很明显。在本文中,我们提出了一个深入的转移学习框架,旨在在小型培训数据集上执行分类。提出的方法是根据AAMI EC57标准,用MIT-BIH心律失常数据集微调通用图像分类器RESNET-18。本文进一步研究了许多现有的深度学习模型,这些模型未能避免根据AAMI建议泄漏数据。我们比较不同的数据拆分方法如何影响模型性能。这项比较研究表明,在使用包括MIT-BIH心律失常数据集在内时,心律不齐分类的未来工作应遵循AAMI EC57标准。
translated by 谷歌翻译
背景:基于AI的足够大型,精心策划的医疗数据集的分析已被证明有望提供早期检测,更快的诊断,更好的决策和更有效的治疗方法。但是,从多种来源获得的如此高度机密且非常敏感的医疗数据通常受到高度限制,因为不当使用,不安全的存储,数据泄漏或滥用可能侵犯了一个人的隐私。在这项工作中,我们将联合学习范式应用于异质的,孤立的高清心电图集,该图从12铅的ECG传感器阵列到达来训练AI模型。与在中心位置收集相同的数据时,我们评估了所得模型的能力,与经过训练的最新模型相比,获得了等效性能。方法:我们提出了一种基于联合学习范式训练AI模型的隐私方法,以培训AI模型,以实现异质,分布式,数据集。该方法应用于基于梯度增强,卷积神经网络和具有长期短期记忆的复发神经网络的广泛机器学习技术。这些模型在一个心电图数据集上进行了培训,该数据集包含从六名地理分开和异质来源的43,059名患者收集的12个铅录音。研究结果:用于检测心血管异常的AI模型的结果集获得了与使用集中学习方法训练的模型相当的预测性能。解释:计算参数的方法在本地为全局模型做出了贡献,然后仅交换此类参数,而不是ML中的整个敏感数据,这有助于保留医疗数据隐私。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
心血管疾病(CVD)是一组心脏和血管疾病,是对人类健康最严重的危险之一,此类患者的数量仍在增长。早期,准确的检测在成功治疗和干预中起着关键作用。心电图(ECG)是识别各种心血管异常的金标准。在临床实践和当前大多数研究中,主要使用标准的12铅ECG。但是,使用较少的铅可以使ECG更加普遍,因为可以通过便携式或可穿戴设备来方便地记录它。在这项研究中,我们开发了一种新颖的深度学习系统,以仅使用三个ECG铅来准确识别多个心血管异常。
translated by 谷歌翻译
如今,越来越多的人被诊断出患有心血管疾病(CVD),这是全球死亡的主要原因。鉴定这些心脏问题的金标准是通过心电图(ECG)。标准的12铅ECG广泛用于临床实践和当前的大多数研究。但是,使用较少的铅可以使ECG更加普遍,因为它可以与便携式或可穿戴设备集成。本文介绍了两种新型技术,以提高当前深度学习系统的3铅ECG分类的性能,从而与使用标准12铅ECG训练的模型相提并论。具体而言,我们提出了一种以心跳回归数量的形式的多任务学习方案,以及将患者人口统计数据整合到系统中的有效机制。随着这两个进步,我们在两个大规模的ECG数据集(即Chapman和CPSC-2018)上以F1分数为0.9796和0.8140的分类性能,这些数据分别超过了当前最新的ECG分类方法,该方法超过了当前的ECG分类方法。甚至那些接受了12条铅数据的培训。为了鼓励进一步开发,我们的源代码可在https://github.com/lhkhiem28/lightx3ecg上公开获得。
translated by 谷歌翻译
心脏死亡和心律不齐占全世界所有死亡的很大一部分。心电图(ECG)是用于心血管疾病的最广泛使用的筛查工具。传统上,ECG信号是手动分类的,需要经验和良好的技巧,同时又耗时且容易出错。因此,机器学习算法因其执行复杂数据分析的能力而被广泛采用。从ECG(主要是Q,r和s)中引入的特征广泛用于心律不齐。在这项工作中,我们证明了使用混合功能和三种不同模型的ECG分类的性能提高了,这是我们过去提出的1D卷积神经网络(CNN)模型的建立。这项工作中提出的基于RR间隔的模型的准确性为98.98%,这是对基线模型的改进。为了使模型免疫噪声,我们使用频率功能更新了模型,并在噪声的存在下实现了良好的持续性能,精度略低为98.69%。此外,开发了另一个结合频率特征和RR间隔功能的模型,在嘈杂的环境中,持续性能良好,高精度为99%。由于其高精度和噪声免疫力,结合了多个混合功能的拟议模型非常适合门诊可穿戴感应应用。
translated by 谷歌翻译
近年来,基于生理信号的认证表现出伟大的承诺,因为其固有的对抗伪造的鲁棒性。心电图(ECG)信号是最广泛研究的生物关像,也在这方面获得了最高的关注。已经证明,许多研究通过分析来自不同人的ECG信号,可以识别它们,可接受的准确性。在这项工作中,我们展示了EDITH,EDITH是一种基于深入的ECG生物识别认证系统的框架。此外,我们假设并证明暹罗架构可以在典型的距离指标上使用,以提高性能。我们使用4个常用的数据集进行了评估了伊迪丝,并使用少量节拍表现优于先前的工作。 Edith使用仅单一的心跳(精度为96-99.75%)进行竞争性,并且可以通过融合多个节拍(从3到6个节拍的100%精度)进一步提高。此外,所提出的暹罗架构管理以将身份验证等错误率(eer)降低至1.29%。具有现实世界实验数据的Edith的有限案例研究还表明其作为实际认证系统的潜力。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
心律不齐的右心肌病(ARVC)是一种遗传性心肌疾病,在患者生命的第二和十年之间出现,导致35岁之前的心脏突然死亡的20%。在心电图(ECG)上,在降低过早心血管死亡率中可能具有至关重要的作用。在我们的分析中,我们首先概述了基于纸张的ECG信号的数字化过程,该空间过滤器旨在消除数据集图像中与ECG波形无关的黑暗区域,从而产生不良的噪声。接下来,我们建议使用低 - 复杂性卷积神经网络来检测心律失常心脏病,迄今为止尚未通过使用深度学习方法来研究,迄今为止的使用,达到高分类准确性,即99.98%的训练和98.6%测试准确性,与其他心律失常异常相反,在疾病上,其主要鉴定标准是ECG形态的无限千伏变化。最后,通过进行光谱分析,我们研究了与ARVC患者相对应的正常ECG和ECG之间频率领域的显着区别。在我们遇到统计学上显着分化的18个频率中,有16个中,正常的心电图的特征是与异常相比更大的归一化振幅。本文进行的总体研究强调了将数学方法整合到各种疾病的检查和有效诊断中的重要性,旨在为他们的成功治疗做出重大贡献。
translated by 谷歌翻译