在过去的几年中,用于计算机视觉的深度学习技术的快速发展极大地促进了医学图像细分的性能(Mediseg)。但是,最近的梅赛格出版物通常集中于主要贡献的演示(例如,网络体系结构,培训策略和损失功能),同时不知不觉地忽略了一些边缘实施细节(也称为“技巧”),导致了潜在的问题,导致了潜在的问题。不公平的实验结果比较。在本文中,我们为不同的模型实施阶段(即,预培训模型,数据预处理,数据增强,模型实施,模型推断和结果后处理)收集了一系列Mediseg技巧,并在实验中探索了有效性这些技巧在一致的基线模型上。与仅关注分割模型的优点和限制分析的纸驱动调查相比,我们的工作提供了大量的可靠实验,并且在技术上更可操作。通过对代表性2D和3D医疗图像数据集的广泛实验结果,我们明确阐明了这些技巧的效果。此外,根据调查的技巧,我们还开源了一个强大的梅德西格存储库,其每个组件都具有插件的优势。我们认为,这项里程碑的工作不仅完成了对最先进的Mediseg方法的全面和互补的调查,而且还提供了解决未来医学图像处理挑战的实用指南,包括但不限于小型数据集学习,课程不平衡学习,多模式学习和领域适应。该代码已在以下网址发布:https://github.com/hust-linyi/mediseg
translated by 谷歌翻译
数据采集​​和注释中的困难基本上限制了3D医学成像应用的训练数据集的样本尺寸。结果,在没有足够的预训练参数的情况下,构建来自划痕的高性能3D卷积神经网络仍然是一项艰巨的任务。以前关于3D预培训的努力经常依赖于自我监督的方法,它在未标记的数据上使用预测或对比学习来构建不变的3D表示。然而,由于大规模监督信息的不可用,从这些学习框架获得语义不变和歧视性表示仍然存在问题。在本文中,我们重新审视了一种创新但简单的完全监督的3D网络预训练框架,以利用来自大型2D自然图像数据集的语义监督。通过重新设计的3D网络架构,重新设计的自然图像用于解决数据稀缺问题并开发强大的3D表示。四个基准数据集上的综合实验表明,所提出的预先接受的模型可以有效地加速收敛,同时还提高了各种3D医学成像任务,例如分类,分割和检测的准确性。此外,与从头划伤的训练相比,它可以节省高达60%的注释工作。在NIH Deeplesion数据集上,它同样地实现了最先进的检测性能,优于早期的自我监督和完全监督的预训练方法,以及从头训练进行培训的方法。为了促进3D医疗模型的进一步发展,我们的代码和预先接受的模型权重在https://github.com/urmagicsmine/cspr上公开使用。
translated by 谷歌翻译
不工会是骨科诊所面临的针对技术困难和高成本拍摄骨间毛细血管面临的挑战之一。细分容器和填充毛细血管对于理解毛细血管生长遇到的障碍至关重要。但是,现有用于血管分割的数据集主要集中在人体的大血管上,缺乏标记的毛细管图像数据集极大地限制了血管分割和毛细血管填充的方法论开发和应用。在这里,我们提出了一个名为IFCIS-155的基准数据集,由155个2D毛细管图像组成,该图像具有分割边界和由生物医学专家注释的血管填充物,以及19个大型高分辨率3D 3D毛细管图像。为了获得更好的骨间毛细血管图像,我们利用最先进的免疫荧光成像技术来突出骨间毛细血管的丰富血管形态。我们进行全面的实验,以验证数据集和基准测试深度学习模型的有效性(\ eg UNET/UNET ++和修改后的UNET/UNET ++)。我们的工作提供了一个基准数据集,用于培训毛细管图像细分的深度学习模型,并为未来的毛细管研究提供了潜在的工具。 IFCIS-155数据集和代码均可在\ url {https://github.com/ncclabsustech/ifcis-55}上公开获得。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
作为新一代神经体系结构的变形金刚在自然语言处理和计算机视觉方面表现出色。但是,现有的视觉变形金刚努力使用有限的医学数据学习,并且无法概括各种医学图像任务。为了应对这些挑战,我们将Medformer作为数据量表变压器呈现为可推广的医学图像分割。关键设计结合了理想的电感偏差,线性复杂性的层次建模以及以空间和语义全局方式以线性复杂性的关注以及多尺度特征融合。 Medformer可以在不预训练的情况下学习微小至大规模的数据。广泛的实验表明,Medformer作为一般分割主链的潜力,在三个具有多种模式(例如CT和MRI)和多样化的医学靶标(例如,健康器官,疾病,疾病组织和肿瘤)的三个公共数据集上优于CNN和视觉变压器。我们将模型和评估管道公开可用,为促进广泛的下游临床应用提供固体基线和无偏比较。
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
对于3D医学图像(例如CT和MRI)分割,在临床情况下分割每个切片的难度差异很大。先前以逐片方式进行体积医学图像分割的研究通常使用相同的2D深神经网络来细分同一情况的所有切片,从而忽略了图像切片之间的数据异质性。在本文中,我们专注于多模式3D MRI脑肿瘤分割,并根据自适应模型选择提出了一个名为MED-DANET的动态体系结构网络,以实现有效的准确性和效率折衷。对于输入3D MRI量的每个切片,我们提出的方法学习了决策网络的特定于切片的决策,以动态从预定义的模型库中选择合适的模型,以完成后续的2D分割任务。 Brats 2019和2020年数据集的广泛实验结果表明,我们提出的方法比以前的3D MRI脑肿瘤分割的最先进方法获得了可比或更好的结果,模型的复杂性要少得多。与最新的3D方法TransBT相比,提出的框架提高了模型效率高达3.5倍,而无需牺牲准确性。我们的代码将很快公开可用。
translated by 谷歌翻译
Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CASTformer a strong starting point for downstream medical image analysis tasks.
translated by 谷歌翻译
自动肿瘤或病变分割是用于计算机辅助诊断的医学图像分析的关键步骤。尽管基于卷积神经网络(CNN)的现有方法已经达到了最先进的表现,但医疗肿瘤分割中仍然存在许多挑战。这是因为,尽管人类视觉系统可以有效地检测到2D图像中的对称性,但常规CNN只能利用翻译不变性,忽略医学图像中存在的进一步固有的对称性,例如旋转和反射。为了解决这个问题,我们通过编码那些固有的对称性来学习更精确的表示形式,提出了一个新型的群体模棱两可的分割框架。首先,在每个方向上都设计了基于内核的模棱两可的操作,这使其能够有效地解决现有方法中学习对称性的差距。然后,为了保持全球分割网络,我们设计具有层面对称性约束的独特组层。最后,基于我们的新框架,对现实世界临床数据进行的广泛实验表明,一个群体含量的res-unet(名为GER-UNET)优于其基于CNN的常规对应物,并且在最新的分段方法中优于其最新的分段方法。肝肿瘤分割,COVID-19肺部感染分割和视网膜血管检测的任务。更重要的是,新建的GER-UNET还显示出在降低样品复杂性和过滤器的冗余,升级当前分割CNN和划定器官上的其他医学成像方式上的潜力。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
语义图像分割的最新进展极大地受益于更深入和更大的卷积神经网络(CNN)模型。与野生的图像分割相比,由于过度拟合,医疗图像本身和现有医疗数据集的属性都阻碍了更深入和更大的模型。为此,我们为自动端到端的医学图像分割提出了一种新型的两流UNET体系结构,其中强度值和梯度向量流(GVF)分别是每个流的两个输入。我们证明,具有更低级别的两流CNN具有极大的益处,从而使语义分割有益于不完美的医学图像数据集。我们提出的两流网络对流行的医学图像分割基准进行了培训和评估,结果与最新技术具有竞争力。该代码将很快发布。
translated by 谷歌翻译
深度学习为生物医学图像分割带来了最深刻的贡献,以自动化医学成像中描绘的过程。为了完成此类任务,需要使用大量注释或标记数据来训练模型,这些数据突出显示与二进制掩码的感兴趣区域。然而,有效地产生这种庞大数据的注释需要专家生物医学分析师和广泛的手动努力。这是一个繁琐而昂贵的任务,同时也容易受到人类错误的影响。为了解决这个问题,提出了一种自我监督的学习框架,BT-UNET,以通过以无监督的方式通过冗余的方式预先训练U-Net模型的编码器来预先训练U-Net模型的编码器来学习数据表示。稍后,完整的网络精确调整以执行实际分段。 BT-UNET框架可以在具有有限数量的注释样本的同时训练,同时具有大量未经发布的样本,这主要是现实世界问题的情况。通过使用标准评估指标生成有限数量标记的样本的场景,通过多个U-Net模型通过多个U-Net模型进行验证。通过详尽的实验试验,观察到BT-UNET框架在这种情况下提高了U-NET模型的性能,具有重要利润。
translated by 谷歌翻译
Solving variational image segmentation problems with hidden physics is often expensive and requires different algorithms and manually tunes model parameter. The deep learning methods based on the U-Net structure have obtained outstanding performances in many different medical image segmentation tasks, but designing such networks requires a lot of parameters and training data, not always available for practical problems. In this paper, inspired by traditional multi-phase convexity Mumford-Shah variational model and full approximation scheme (FAS) solving the nonlinear systems, we propose a novel variational-model-informed network (denoted as FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features. The proposed model-informed network integrates image data and mathematical models, and implements them through learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear systems, where a skip-connection is employed to fuse the multi-scale features. Secondly, we further design a convolution block to fuse the extracted features from the previous stage, resulting in the final segmentation possibility. Experimental results on three different medical image segmentation tasks show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations. Moreover, it may also be possible to train specialized network architectures that automatically satisfy some of the mathematical and physical laws in other image problems for better accuracy, faster training and improved generalization.The code is available at \url{https://github.com/zhuhui100/FASUNet}.
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
脾脏是钝性腹腔创伤中最常见的固体器官之一。来自多相CT的自动分割系统的开发用于脾血管损伤的脾血管损伤,可以增强严重程度,以改善临床决策支持和结果预测。然而,由于以下原因,脾血管损伤的准确细分是具有挑战性的:1)脾血管损伤可以是高度变体的形状,质地,尺寸和整体外观; 2)数据采集是一种复杂和昂贵的程序,需要来自数据科学家和放射科学家的密集努力,这使得大规模的注释数据集难以获取。鉴于这些挑战,我们在此设计了一种用于多相脾血管损伤分割的新框架,尤其是数据有限。一方面,我们建议利用外部数据作为矿井伪脾面罩作为空间关注,被称为外部关注,用于引导脾血管损伤的分割。另一方面,我们开发一个合成相位增强模块,它在生成的对抗网络上构建,通过完全利用不同阶段之间的关系来填充内部数据。通过联合实施外部注意力和填充内部数据表示,我们提出的方法优于其他竞争方法,并且在平均DSC方面大大改善了超过7%的流行Deeplab-V3 +基线,这证实了其有效性。
translated by 谷歌翻译