LiDAR mapping is important yet challenging in self-driving and mobile robotics. To tackle such a global point cloud registration problem, DeepMapping converts the complex map estimation into a self-supervised training of simple deep networks. Despite its broad convergence range on small datasets, DeepMapping still cannot produce satisfactory results on large-scale datasets with thousands of frames. This is due to the lack of loop closures and exact cross-frame point correspondences, and the slow convergence of its global localization network. We propose DeepMapping2 by adding two novel techniques to address these issues: (1) organization of training batch based on map topology from loop closing, and (2) self-supervised local-to-global point consistency loss leveraging pairwise registration. Our experiments and ablation studies on public datasets (KITTI, NCLT, and Nebula) demonstrate the effectiveness of our method. Our code will be released.
translated by 谷歌翻译
The current LiDAR SLAM (Simultaneous Localization and Mapping) system suffers greatly from low accuracy and limited robustness when faced with complicated circumstances. From our experiments, we find that current LiDAR SLAM systems have limited performance when the noise level in the obtained point clouds is large. Therefore, in this work, we propose a general framework to tackle the problem of denoising and loop closure for LiDAR SLAM in complex environments with many noises and outliers caused by reflective materials. Current approaches for point clouds denoising are mainly designed for small-scale point clouds and can not be extended to large-scale point clouds scenes. In this work, we firstly proposed a lightweight network for large-scale point clouds denoising. Subsequently, we have also designed an efficient loop closure network for place recognition in global optimization to improve the localization accuracy of the whole system. Finally, we have demonstrated by extensive experiments and benchmark studies that our method can have a significant boost on the localization accuracy of the LiDAR SLAM system when faced with noisy point clouds, with a marginal increase in computational cost.
translated by 谷歌翻译
我们介绍了一种简单而有效的方法,可以使用本地3D深度描述符(L3DS)同时定位和映射解决循环闭合检测。 L3DS正在采用深度学习算法从数据从数据中学到的点云提取的斑块的紧凑型表示。通过在通过其估计的相对姿势向循环候选点云登记之后计算对应于相互最近邻接描述符的点之间的度量误差,提出了一种用于循环检测的新颖重叠度量。这种新方法使我们能够在小重叠的情况下精确地检测环并估计六个自由度。我们将基于L3D的循环闭合方法与最近的LIDAR数据的方法进行比较,实现最先进的环路闭合检测精度。此外,我们嵌入了我们在最近的基于边缘的SLAM系统中的循环闭合方法,并对现实世界RGBD-TUM和合成ICL数据集进行了评估。与其原始环路闭合策略相比,我们的方法能够实现更好的本地化准确性。
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
循环闭合检测是同时定位和映射(SLAM)系统的重要组成部分,这减少了随时间累积的漂移。多年来,已经提出了一些深入的学习方法来解决这项任务,但是与手工制作技术相比,他们的表现一直是SubPar,特别是在处理反向环的同时。在本文中,我们通过同时识别先前访问的位置并估计当前扫描与地图之间的6-DOF相对变换,有效地检测LIDAR点云中的LINAS点云中的环闭环的新颖LCDNET。 LCDNET由共享编码器组成,一个地方识别头提取全局描述符,以及估计两个点云之间的变换的相对姿势头。我们基于不平衡的最佳运输理论介绍一种新颖的相对姿势,我们以可分散的方式实现,以便实现端到端训练。在多个现实世界自主驾驶数据集中的LCDNET广泛评估表明我们的方法优于最先进的环路闭合检测和点云登记技术,特别是在处理反向环的同时。此外,我们将所提出的循环闭合检测方法集成到LIDAR SLAM库中,以提供完整的映射系统,并在看不见的城市中使用不同的传感器设置展示泛化能力。
translated by 谷歌翻译
We propose a framework for tightly-coupled lidar inertial odometry via smoothing and mapping, LIO-SAM, that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. LIO-SAM formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system. The estimated motion from inertial measurement unit (IMU) pre-integration de-skews point clouds and produces an initial guess for lidar odometry optimization. The obtained lidar odometry solution is used to estimate the bias of the IMU. To ensure high performance in real-time, we marginalize old lidar scans for pose optimization, rather than matching lidar scans to a global map. Scan-matching at a local scale instead of a global scale significantly improves the real-time performance of the system, as does the selective introduction of keyframes, and an efficient sliding window approach that registers a new keyframe to a fixed-size set of prior "sub-keyframes." The proposed method is extensively evaluated on datasets gathered from three platforms over various scales and environments.
translated by 谷歌翻译
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探视法累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了Padloc,这是一种基于激光雷达的环路闭合检测和注册体系结构,其中包括共享的3D卷积特征提取主链,用于环路闭合检测的全局描述符,以及用于点云匹配和注册的新型变压器头。我们提出了多种方法,用于估计基于多样性指数的点匹配置信度。此外,为了提高前向后的一致性,我们建议使用两个共享匹配和注册头,并通过利用估计的相对转换必须相互倒数来交换其源和目标输入。此外,我们以新颖的损失函数的形式利用综合信息在培训期间,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的性能。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
如何提取重要点云特征并估计它们之间的姿势仍然是一个具有挑战性的问题,因为点云的固有缺乏结构和暧昧的顺序排列。尽管对大多数3D计算机视觉任务的基于深度学习的方法进行了重大改进,例如对象分类,对象分割和点云注册,但功能之间的一致性在现有的基于学习的流水线上仍然没有吸引力。在本文中,我们提出了一种用于复杂对准场景的新型学习的对齐网络,标题为深度特征一致性,并由三个主模块组成:多尺度图形特征合并网络,用于将几何对应集转换为高维特征,对应加权用于构建多个候选内部子集的模块,以及命名为深度特征匹配的Procrustes方法,用于给出闭合方案来估计相对姿势。作为深度特征匹配模块的最重要步骤,构造每个Inlier子集的特征一致性矩阵以获得其主要向量作为相应子集的含义似然性。我们全面地验证了我们在3DMATCH数据集和基提ODOMOTRY数据集中的方法的鲁棒性和有效性。对于大型室内场景,3DMATCH数据集上的注册结果表明,我们的方法优于最先进的传统和基于学习的方法。对于Kitti户外场景,我们的方法仍然能够降低转换错误。我们还在交叉数据集中探讨其强大的泛化能力。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
最近的3D注册方法可以有效处理大规模或部分重叠的点对。然而,尽管具有实用性,但在空间尺度和密度方面与不平衡对匹配。我们提出了一种新颖的3D注册方法,称为uppnet,用于不平衡点对。我们提出了一个层次结构框架,通过逐渐减少搜索空间,可以有效地找到近距离的对应关系。我们的方法预测目标点的子区域可能与查询点重叠。以下超点匹配模块和细粒度的细化模块估计两个点云之间的准确对应关系。此外,我们应用几何约束来完善满足空间兼容性的对应关系。对应性预测是对端到端训练的,我们的方法可以通过单个前向通行率预测适当的刚体转换,并给定点云对。为了验证提出方法的疗效,我们通过增强Kitti LiDAR数据集创建Kitti-UPP数据集。该数据集的实验表明,所提出的方法显着优于最先进的成对点云注册方法,而当目标点云大约为10 $ \ times $ higation时,注册召回率的提高了78%。比查询点云大约比查询点云更密集。
translated by 谷歌翻译
循环结束是自动移动系统同时本地化和映射(SLAM)的基本组成部分。在视觉大满贯领域,单词袋(弓)在循环封闭方面取得了巨大的成功。循环搜索的弓特征也可以在随后的6-DOF环校正中使用。但是,对于3D激光雷达的猛击,最新方法可能无法实时识别循环,并且通常无法纠正完整的6-DOF回路姿势。为了解决这一限制,我们呈现了一袋新颖的单词,以实时循环在3D LIDAR大满贯中关闭,称为Bow3D。我们方法的新颖性在于,它不仅有效地识别了重新审视的环路,而且还实时纠正了完整的6型循环姿势。 BOW3D根据3D功能link3D构建单词袋,该链接有效,姿势不变,可用于准确的点对点匹配。我们将我们提出的方法嵌入了3D激光射击系统中,以评估循环闭合性能。我们在公共数据集上测试我们的方法,并将其与其他最先进的算法进行比较。在大多数情况下,BOW3D在F1 MAX和扩展精度分数方面表现出更好的性能,并具有出色的实时性能。值得注意的是,BOW3D平均需要50毫秒才能识别和纠正Kitti 00中的循环(包括4K+ 64射线激光扫描),当在使用Intel Core i7 @2.2 GHz处理器的笔记本上执行时。
translated by 谷歌翻译
我们提出了一种适用于一般3D点云数据的新型可区分加权的广义最接近点(WGICP)方法,包括来自LIDAR的数据。我们的方法建立在可区分的通用ICP(GICP)的基础上,我们建议使用可区分的k-neartient(KNN)算法来增强可怜性。可区分的GICP算法提供了相对于每个输入点的输出姿势估计的梯度,这使我们能够训练神经网络以预测其在估计正确姿势时的重要性或权重。与其他基于ICP的方法相反,这些方法使用基于体素的下采样或匹配方法来降低计算成本,我们的方法直接通过仅选择具有最高权重并忽略冗余较低权重的人来直接减少GICP使用的点数。我们表明,我们的方法提高了KITTI数据集的GICP算法的准确性和速度,可用于开发更强大,更有效的SLAM系统。
translated by 谷歌翻译
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
translated by 谷歌翻译
重建准确且一致的大规模激光点云图对机器人应用至关重要。现有的解决方案姿势图优化虽然是及时的,但并未直接优化映射一致性。最近提出了LIDAR捆绑调整(BA)来解决此问题;但是,它在大规模地图上太耗时了。为了减轻此问题,本文介绍了适合大规模地图的全球一致和有效的映射方法。我们提出的工作包括自下而上的分层BA和自上而下的姿势图优化,结合了这两种方法的优势。通过层次设计,我们解决了比原始BA小得多的Hessian矩阵大小的多个BA问题。借助姿势图优化,我们可以平稳有效地更新LiDAR姿势。我们提出的方法的有效性和鲁棒性已在多个空间和及时的大规模公共旋转雷达数据集上得到验证,即Kitti,Mulran和Newer College,以及在结构化和非结构化场景下进行自我收集的固态LIDAR数据集。通过适当的设置,我们证明我们的工作可以生成全球一致的地图,约有序列时间的12%。
translated by 谷歌翻译
在未知和大规模的地下环境中,与一组异质的移动机器人团队进行搜救,需要高精度的本地化和映射。在复杂和感知衰落的地下环境中,这一至关重要的需求面临许多挑战,因为在船上感知系统需要在非警官条件下运作(由于黑暗和灰尘,坚固而泥泞的地形以及自我的存在以及自我的存在,都需要运作。 - 类似和模棱两可的场景)。在灾难响应方案和缺乏有关环境的先前信息的情况下,机器人必须依靠嘈杂的传感器数据并执行同时定位和映射(SLAM)来构建环境的3D地图,并定位自己和潜在的幸存者。为此,本文报告了Team Costar在DARPA Subterranean Challenge的背景下开发的多机器人大满贯系统。我们通过合并一个可适应不同的探针源和激光镜配置的单机器人前端界面来扩展以前的工作,即LAMP,这是一种可伸缩的多机前端,以支持大型大型和内部旋转循环闭合检测检测规模环境和多机器人团队,以及基于渐变的非凸度的稳健后端,配备了异常弹性姿势图优化。我们提供了有关多机器人前端和后端的详细消融研究,并评估美国跨矿山,发电厂和洞穴收集的挑战现实世界中的整体系统性能。我们还发布了我们的多机器人后端数据集(以及相应的地面真相),可以作为大规模地下大满贯的具有挑战性的基准。
translated by 谷歌翻译
视觉径图旨在使用视觉传感器捕获的信息跟踪对象的增量运动。在这项工作中,我们研究了点云测量问题,其中仅使用LIDAR(光检测和测距)获得的点云扫描来估计对象的运动轨迹。提出了一种轻量点云测距溶液,并命名为绿点云机径(GPCO)方法。 GPCO是一种无监督的学习方法,可以通过匹配连续点云扫描的特征来预测对象运动。它由三个步骤组成。首先,使用几何特征感知点采样方案来选择来自大点云的判别点。其次,视图被划分为围绕对象的四个区域,并且尖端++方法用于提取点特征。第三,建立点对应,以估计两个连续扫描之间的对象运动。进行了基准数据集的实验,以证明GPCO方法的有效性。据观察,GPCO以准确性的准确性越优于深度学习方法,而模型规模明显较小,培训时间较少。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
多机器人大满贯系统在受GPS污染的环境中需要循环封闭以维护无漂移的集中式地图。随着越来越多的机器人和环境大小,检查和计算所有循环闭合候选者的转换变得不可行。在这项工作中,我们描述了一个循环闭合模块,该模块能够优先考虑哪个循环闭合以根据基础姿势图,与已知信标的接近性以及点云的特性进行计算。我们在DARPA地下挑战和许多具有挑战性的地下数据集中验证该系统,并证明该系统能够生成和保持低误差的地图。我们发现,我们提出的技术能够选择有效的循环封闭,与探空量解决方案相比,与没有优先级排序的基线版本相比,中位误差的平均值减少了51%,中位误差的平均误差和平均值减少了75%。我们还发现,与处理四个半小时内每个可能的循环封闭的系统相比,我们提出的系统能够在一小时的任务时间内找到较低的错误。可以找到此工作的代码和数据集https://github.com/nebula-autonomy/lamp
translated by 谷歌翻译
电线杆和建筑物边缘经常是城市道路上可观察到的对象,为各种计算机视觉任务提供了可靠的提示。为了重复提取它们作为特征并在离散激光镜头框架之间进行注册,我们提出了第一个基于学习的功能分割和LIDAR点云中3D线的描述模型。为了训练我们的模型,而无需耗时和乏味的数据标记过程,我们首先生成了目标线基本外观的合成原始图,并构建一个迭代线自动标记的过程,以逐步完善真实激光扫描的线路标签。我们的分割模型可以在任意规模的扰动下提取线,我们使用共享的EDGECONV编码层共同训练两个分割和描述符头。基于模型,我们可以在没有初始转换提示的情况下构建一个高度可用的全局注册模块,用于点云注册。实验表明,我们基于线的注册方法对基于最先进的方法的方法具有很高的竞争力。我们的代码可在https://github.com/zxrzju/superline3d.git上找到。
translated by 谷歌翻译
使用深网的Visual Place识别(VPR)已达到最先进的性能。但是,他们中的大多数都需要采用地面真相传感器姿势的培训,以获取每个观察的空间邻里的正面和负面样本,以进行监督学习。当不可用的信息不可用时,尽管我们发现其性能次优训练,但可以利用从顺序收集的数据流中的时间社区进行自我监督训练。受嘈杂的标签学习的启发,我们提出了一个名为\ textit {tf-vpr}的新颖的自我监督框架,该框架使用时间社区和可学习的特征邻域来发现未知的空间社区。我们的方法遵循一个迭代训练范式,该范式在以下方面交替:(1)与数据增强的表示学习,(2)正设置扩展以包括当前的特征空间邻居,以及(3)通过几何验证进行正面集合。我们在模拟数据集和真实数据集上进行了全面的实验,将RGB图像或点云作为输入进行。结果表明,我们的方法在召回率,稳健性和标题多样性方面优于我们的基准,这是我们为VPR提出的新型指标。可以在https://ai4ce.github.io/tf-vpr/上找到我们的代码和数据集。
translated by 谷歌翻译