For Lifelong SLAM, one has to deal with temporary localization failures, e.g., induced by kidnapping. We achieve this by starting a new map and merging it with the previous map as soon as relocalization succeeds. Since relocalization methods are fallible, it can happen that such a merge is invalid, e.g., due to perceptual aliasing. To address this issue, we propose methods to detect and undo invalid merges. These methods compare incoming scans with scans that were previously merged into the current map and consider how well they agree with each other. Evaluation of our methods takes place using a dataset that consists of multiple flat and office environments, as well as the public MIT Stata Center dataset. We show that methods based on a change detection algorithm and on comparison of gridmaps perform well in both environments and can be run in real-time with a reasonable computational cost.
translated by 谷歌翻译
Lidar-based SLAM systems perform well in a wide range of circumstances by relying on the geometry of the environment. However, even mature and reliable approaches struggle when the environment contains structureless areas such as long hallways. To allow the use of lidar-based SLAM in such environments, we propose to add reflector markers in specific locations that would otherwise be difficult. We present an algorithm to reliably detect these markers and two approaches to fuse the detected markers with geometry-based scan matching. The performance of the proposed methods is demonstrated on real-world datasets from several industrial environments.
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
大多数现实世界情景的环境,如商场和超市始终变化。预构建的地图,不会占这些变化的内容容易过时。因此,有必要具有环境的最新模型,以促进机器人的长期运行。为此,本文呈现了一般终身同时定位和映射(SLAM)框架。我们的框架使用多个会话映射表示,并利用一个有效的地图更新策略,包括地图建筑,姿势图形细化和稀疏化。为了减轻内存使用情况的无限性增加,我们提出了一种基于Chow-Liu最大相互信息生成树的地图修剪方法。在真正的超市环境中,通过一个月的机器人部署全面验证了拟议的SLAM框架。此外,我们释放了从室内和户外变化环境中收集的数据集,希望加速在社区中的终身猛烈的Slam研究。我们的数据集可在https://github.com/sanduan168/lifelong-slam-dataset中获得。
translated by 谷歌翻译
多机器人大满贯系统在受GPS污染的环境中需要循环封闭以维护无漂移的集中式地图。随着越来越多的机器人和环境大小,检查和计算所有循环闭合候选者的转换变得不可行。在这项工作中,我们描述了一个循环闭合模块,该模块能够优先考虑哪个循环闭合以根据基础姿势图,与已知信标的接近性以及点云的特性进行计算。我们在DARPA地下挑战和许多具有挑战性的地下数据集中验证该系统,并证明该系统能够生成和保持低误差的地图。我们发现,我们提出的技术能够选择有效的循环封闭,与探空量解决方案相比,与没有优先级排序的基线版本相比,中位误差的平均值减少了51%,中位误差的平均误差和平均值减少了75%。我们还发现,与处理四个半小时内每个可能的循环封闭的系统相比,我们提出的系统能够在一小时的任务时间内找到较低的错误。可以找到此工作的代码和数据集https://github.com/nebula-autonomy/lamp
translated by 谷歌翻译
3D场景图最近已成为3D环境的强大高级表示。一个3D场景图将环境描述为一个分层图,其中节点在多个级别的抽象和边缘表示概念之间的关系。尽管3D场景图可以用作机器人的高级“心理模型”,但如何实时建立如此丰富的代表仍然是未知的领域。本文描述了一个实时空间感知系统,这是一套算法,可实时从传感器数据构建3D场景图。我们的第一个贡献是开发实时算法,以在机器人探索环境时逐步构建场景图的层。这些算法在当前机器人位置构建了本地欧几里得签名的距离功能(ESDF),从ESDF中提取位置的拓扑图,然后使用受社区检测技术启发的方法将其分为房间。我们的第二个贡献是研究3D场景图中的循环闭合检测和优化。我们表明,3D场景图允许定义层次描述符以进行循环闭合检测;我们的描述符捕获场景图中跨层的统计信息,从低级视觉外观到有关对象和位置的摘要统计信息。然后,我们提出了第一种算法来优化3D场景图,以响应循环封闭。我们的方法依靠嵌入式变形图同时校正场景图的所有层。我们将提出的空间感知系统实施到一个名为Hydra的体系结构中,该体系结合了快速的早期和中级感知过程与较慢的高级感知。我们在模拟和真实数据上评估了Hydra,并证明它能够以与批处理离线方法相当的准确性重建3D场景图,尽管在线运行。
translated by 谷歌翻译
For long-term simultaneous planning, localization and mapping (SPLAM), a robot should be able to continuously update its map according to the dynamic changes of the environment and the new areas explored. With limited onboard computation capabilities, a robot should also be able to limit the size of the map used for online localization and mapping. This paper addresses these challenges using a memory management mechanism, which identifies locations that should remain in a Working Memory (WM) for online processing from locations that should be transferred to a Long-Term Memory (LTM). When revisiting previously mapped areas that are in LTM, the mechanism can retrieve these locations and place them back in WM for online SPLAM. The approach is tested on a robot equipped with a short-range laser rangefinder and a RGB-D camera, patrolling autonomously 10.5 km in an indoor environment over 11 sessions while having encountered 139 people.
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challenging environments and interoperability of heterogeneous multi-robot systems with varying sensor setups. With maplab 2.0, we provide a versatile open-source platform that facilitates developing, testing, and integrating new modules and features into a fully-fledged SLAM system. Through extensive experiments, we show that maplab 2.0's accuracy is comparable to the state-of-the-art on the HILTI 2021 benchmark. Additionally, we showcase the flexibility of our system with three use cases: i) large-scale (approx. 10 km) multi-robot multi-session (23 missions) mapping, ii) integration of non-visual landmarks, and iii) incorporating a semantic object-based loop closure module into the mapping framework. The code is available open-source at https://github.com/ethz-asl/maplab.
translated by 谷歌翻译
完全自主移动机器人的现实部署取决于能够处理动态环境的强大的大满贯(同时本地化和映射)系统,其中对象在机器人的前面移动以及不断变化的环境,在此之后移动或更换对象。机器人已经绘制了现场。本文介绍了更换式SLAM,这是一种在动态和不断变化的环境中强大的视觉猛烈抨击的方法。这是通过使用与长期数据关联算法结合的贝叶斯过滤器来实现的。此外,它采用了一种有效的算法,用于基于对象检测的动态关键点过滤,该对象检测正确识别了不动态的边界框中的特征,从而阻止了可能导致轨道丢失的功能的耗竭。此外,开发了一个新的数据集,其中包含RGB-D数据,专门针对评估对象级别的变化环境,称为PUC-USP数据集。使用移动机器人,RGB-D摄像头和运动捕获系统创建了六个序列。这些序列旨在捕获可能导致跟踪故障或地图损坏的不同情况。据我们所知,更换 - 峰是第一个对动态和不断变化的环境既有坚固耐用的视觉大满贯系统,又不假设给定的相机姿势或已知地图,也能够实时运行。使用基准数据集对所提出的方法进行了评估,并将其与其他最先进的方法进行了比较,证明是高度准确的。
translated by 谷歌翻译
在本文中,我们提出了一种从3D点云生成分层的体积拓扑图的方法。我们的地图中有三个基本的分层级别:$ Storey - Region - 卷$。我们的方法的优点在输入和输出中反映。在输入方面,我们接受多层点云和建筑结构,倾斜的屋顶或天花板。在输出方面,我们可以使用不同维度的度量信息来生成结果,适用于不同的机器人应用。算法通过从3D Voxel占用映射生成$卷$来生成体积表示。然后,我们加入$段落$ s($卷$之间的连接),将小$卷$组合成一个大多数$地区$,并使用2D分段方法进行更好的拓扑表示。我们在几个可自由的数据集中评估我们的方法。实验突出了我们的方法的优势。
translated by 谷歌翻译
LIDAR(光检测和测距)SLAM(同时定位和映射)作为室内清洁,导航和行业和家庭中许多其他有用应用的基础。从一系列LIDAR扫描,它构建了一个准确的全球一致的环境模型,并估计它内部的机器人位置。 SLAM本质上是计算密集的;在具有有限的加工能力的移动机器人上实现快速可靠的SLAM系统是一个具有挑战性的问题。为了克服这种障碍,在本文中,我们提出了一种普遍,低功耗和资源有效的加速器设计,用于瞄准资源限制的FPGA。由于扫描匹配位于SLAM的核心,所提出的加速器包括可编程逻辑部分上的专用扫描匹配核心,并提供软件接口以便于使用。我们的加速器可以集成到各种SLAM方法,包括基于ROS(机器人操作系统) - 基于ROS(机器人操作系统),并且用户可以切换到不同的方法而不修改和重新合成逻辑部分。我们将加速器集成为三种广泛使用的方法,即扫描匹配,粒子滤波器和基于图形的SLAM。我们使用现实世界数据集评估资源利用率,速度和输出结果质量方面的设计。 Pynq-Z2板上的实验结果表明,我们的设计将扫描匹配和循环闭合检测任务加速高达14.84倍和18.92倍,分别在上述方法中产生4.67倍,4.00倍和4.06倍的整体性能改进。我们的设计能够实现实时性能,同时仅消耗2.4W并保持精度,可与软件对应物乃至最先进的方法相当。
translated by 谷歌翻译
在未知和大规模的地下环境中,与一组异质的移动机器人团队进行搜救,需要高精度的本地化和映射。在复杂和感知衰落的地下环境中,这一至关重要的需求面临许多挑战,因为在船上感知系统需要在非警官条件下运作(由于黑暗和灰尘,坚固而泥泞的地形以及自我的存在以及自我的存在,都需要运作。 - 类似和模棱两可的场景)。在灾难响应方案和缺乏有关环境的先前信息的情况下,机器人必须依靠嘈杂的传感器数据并执行同时定位和映射(SLAM)来构建环境的3D地图,并定位自己和潜在的幸存者。为此,本文报告了Team Costar在DARPA Subterranean Challenge的背景下开发的多机器人大满贯系统。我们通过合并一个可适应不同的探针源和激光镜配置的单机器人前端界面来扩展以前的工作,即LAMP,这是一种可伸缩的多机前端,以支持大型大型和内部旋转循环闭合检测检测规模环境和多机器人团队,以及基于渐变的非凸度的稳健后端,配备了异常弹性姿势图优化。我们提供了有关多机器人前端和后端的详细消融研究,并评估美国跨矿山,发电厂和洞穴收集的挑战现实世界中的整体系统性能。我们还发布了我们的多机器人后端数据集(以及相应的地面真相),可以作为大规模地下大满贯的具有挑战性的基准。
translated by 谷歌翻译
在本文中,我们为全向机器人提供了一种积极的视觉血液。目标是生成允许这样的机器人同时定向机器人的控制命令并将未知环境映射到最大化的信息量和消耗尽可能低的信息。利用机器人的独立翻译和旋转控制,我们引入了一种用于活动V-SLAM的多层方法。顶层决定提供信息丰富的目标位置,并为它们产生高度信息的路径。第二个和第三层积极地重新计划并执行路径,利用连续更新的地图和本地特征信息。此外,我们介绍了两个实用程序配方,以解释视野和机器人位置的障碍物。通过严格的模拟,真正的机器人实验和与最先进的方法的比较,我们证明我们的方法通过较小的整体地图熵实现了类似的覆盖结果。这是可以获得的,同时保持横向距离比其他方法短至39%,而不增加车轮的总旋转量。代码和实现详细信息作为开源提供。
translated by 谷歌翻译
This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.
translated by 谷歌翻译
我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,经过训练,可以预测SOGM的未来时间步骤,并给定3D激光镜框架作为输入。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可预测SOGM表示中嵌入的未来信息,从而有可能捕获房地产的复杂性和不确定性世界多代理,多未来的互动。我们还设计了一个导航系统,该导航系统在计划中使用这些预测的SOGM在计划中,之后它们已转变为时空风险图(SRMS)。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。
translated by 谷歌翻译
在室内运行的自主机器人和GPS拒绝的环境可以使用LIDAR进行大满贯。但是,由于循环闭合检测和计算负载以执行扫描匹配的挑战,在几何衰减的环境中,LIDAR的表现不佳。现有的WiFi基础架构可以用低硬件和计算成本来进行本地化和映射。然而,使用WiFi进行准确的姿势估计是具有挑战性的,因为由于信号传播的不可预测性,可以在同一位置测量不同的信号值。因此,我们介绍了WiFi指纹序列的使用量估计(即循环闭合)。这种方法利用移动机器人移动时获得的位置指纹的空间连贯性。这具有更好的校正探针流漂移的能力。该方法还结合了激光扫描,从而提高了大型和几何衰减环境的计算效率,同时保持LIDAR SLAM的准确性。我们在室内环境中进行了实验,以说明该方法的有效性。基于根平方误差(RMSE)评估结果,并在测试环境中达到了88m的精度。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
本文提出了Kimera-Multi,第一个多机器人系统,(i)是强大的,并且能够识别和拒绝由感知混叠产生的不正确和内部机器人循环闭合,(ii)完全分布,仅依赖于本地(点对点)通信实现分布式本地化和映射,(iii)实时构建环境的全球一致的度量标准三维网状模型,其中网格的面部用语义标签注释。 Kimera-Multi由配备有视觉惯性传感器的机器人团队实现。每个机器人都构建了局部轨迹估计和使用Kimera的本地网格。当通信可用时,机器人基于一种基于新型分布式刻度非凸性算法发起分布式地点识别和鲁棒姿态图优化协议。所提出的协议允许机器人通过利用机器人间循环闭合而鲁棒到异常值来改善其局部轨迹估计。最后,每个机器人使用其改进的轨迹估计来使用网格变形技术来校正本地网格。我们在光逼真模拟,SLAM基准测试数据集中展示了Kimera-Multi,以及使用地机器人收集的靠户外数据集。真实和模拟实验都涉及长轨迹(例如,每个机器人高达800米)。实验表明,在鲁棒性和准确性方面,kimera-multi(i)优于现有技术,(ii)在完全分布的同时实现与集中式大满贯系统相当的估计误差,(iii)在通信带宽方面是显着的(iv)产生精确的公制语义3D网格,并且(v)是模块化的,也可以用于标准3D重建(即,没有语义标签)或轨迹估计(即,不重建3D网格)。
translated by 谷歌翻译