How would you fairly evaluate two multi-object tracking algorithms (i.e. trackers), each one employing a different object detector? Detectors keep improving, thus trackers can make less effort to estimate object states over time. Is it then fair to compare a new tracker employing a new detector with another tracker using an old detector? In this paper, we propose a novel performance measure, named Tracking Effort Measure (TEM), to evaluate trackers that use different detectors. TEM estimates the improvement that the tracker does with respect to its input data (i.e. detections) at frame level (intra-frame complexity) and sequence level (inter-frame complexity). We evaluate TEM over well-known datasets, four trackers and eight detection sets. Results show that, unlike conventional tracking evaluation measures, TEM can quantify the effort done by the tracker with a reduced correlation on the input detections. Its implementation is publicly available online at https://github.com/vpulab/MOT-evaluation.
translated by 谷歌翻译
流行的对象检测度量平均精度(3D AP)依赖于预测的边界框和地面真相边界框之间的结合。但是,基于摄像机的深度估计的精度有限,这可能会导致其他合理的预测,这些预测遭受了如此纵向定位错误,被视为假阳性和假阴性。因此,我们提出了流行的3D AP指标的变体,这些变体旨在在深度估计误差方面更具允许性。具体而言,我们新颖的纵向误差耐受度指标,Let-3D-AP和Let-3D-APL,允许预测的边界框的纵向定位误差,最高为给定的公差。所提出的指标已在Waymo Open DataSet 3D摄像头仅检测挑战中使用。我们认为,它们将通过提供更有信息的性能信号来促进仅相机3D检测领域的进步。
translated by 谷歌翻译
This paper explores a pragmatic approach to multiple object tracking where the main focus is to associate objects efficiently for online and realtime applications. To this end, detection quality is identified as a key factor influencing tracking performance, where changing the detector can improve tracking by up to 18.9%. Despite only using a rudimentary combination of familiar techniques such as the Kalman Filter and Hungarian algorithm for the tracking components, this approach achieves an accuracy comparable to state-of-the-art online trackers. Furthermore, due to the simplicity of our tracking method, the tracker updates at a rate of 260 Hz which is over 20x faster than other state-of-the-art trackers.
translated by 谷歌翻译
The problem of tracking multiple objects in a video sequence poses several challenging tasks. For tracking-bydetection, these include object re-identification, motion prediction and dealing with occlusions. We present a tracker (without bells and whistles) that accomplishes tracking without specifically targeting any of these tasks, in particular, we perform no training or optimization on tracking data. To this end, we exploit the bounding box regression of an object detector to predict the position of an object in the next frame, thereby converting a detector into a Tracktor. We demonstrate the potential of Tracktor and provide a new state-of-the-art on three multi-object tracking benchmarks by extending it with a straightforward re-identification and camera motion compensation.We then perform an analysis on the performance and failure cases of several state-of-the-art tracking methods in comparison to our Tracktor. Surprisingly, none of the dedicated tracking methods are considerably better in dealing with complex tracking scenarios, namely, small and occluded objects or missing detections. However, our approach tackles most of the easy tracking scenarios. Therefore, we motivate our approach as a new tracking paradigm and point out promising future research directions. Overall, Tracktor yields superior tracking performance than any current tracking method and our analysis exposes remaining and unsolved tracking challenges to inspire future research directions.
translated by 谷歌翻译
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.8% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
translated by 谷歌翻译
尽管广泛用作可视检测任务的性能措施,但平均精度(AP)In(i)的限制在反映了本地化质量,(ii)对其计算的设计选择的鲁棒性以及其对输出的适用性没有信心分数。 Panoptic质量(PQ),提出评估Panoptic Seationation(Kirillov等,2019)的措施,不会遭受这些限制,而是限于Panoptic Seationation。在本文中,我们提出了基于其本地化和分类质量的视觉检测器的平均匹配误差,提出了定位召回精度(LRP)误差。 LRP错误,最初仅为Oksuz等人进行对象检测。 (2018),不遭受上述限制,适用于所有视觉检测任务。我们还介绍了最佳LRP(OLRP)错误,因为通过置信区获得的最小LRP错误以评估视觉检测器并获得部署的最佳阈值。我们提供对AP和PQ的LRP误差的详细比较分析,并使用七个可视检测任务(即对象检测,关键点检测,实例分割,Panoptic分段,视觉关系检测,使用近100个最先进的视觉检测器零拍摄检测和广义零拍摄检测)使用10个数据集来统一地显示LRP误差提供比其对应物更丰富和更辨别的信息。可用的代码:https://github.com/kemaloksuz/lrp-error
translated by 谷歌翻译
多对象跟踪(MOT)的目标是检测和跟踪场景中的所有对象,同时为每个对象保留唯一的标识符。在本文中,我们提出了一种新的可靠的最新跟踪器,该跟踪器可以结合运动和外观信息的优势,以及摄像机运动补偿以及更准确的Kalman滤波器状态矢量。我们的新跟踪器在Mot17和Mot20测试集的Motchallenge [29,11]的数据集[29,11]中,Bot-Sort-Reid排名第一,就所有主要MOT指标而言:MOTA,IDF1和HOTA。对于Mot17:80.5 Mota,80.2 IDF1和65.0 HOTA。源代码和预培训模型可在https://github.com/niraharon/bot-sort上找到
translated by 谷歌翻译
以前的在线3D多对象跟踪(3DMOT)方法在与几帧的新检测无关时终止ROCKET。但是如果一个物体刚刚变暗,就像被其他物体暂时封闭或者只是从FOV暂时封闭一样,过早地终止ROCKET将导致身份切换。我们揭示了过早的轨迹终端是现代3DMOT系统中身份开关的主要原因。为了解决这个问题,我们提出了一个不朽的跟踪器,一个简单的跟踪系统,它利用轨迹预测来维护对象变暗的物体的轨迹。我们使用一个简单的卡尔曼滤波器进行轨迹预测,并在目标不可见时通过预测保留轨迹。通过这种方法,我们可以避免由过早托管终止产生的96%的车辆标识开关。如果没有任何学习的参数,我们的方法在Waymo Open DataSet测试集上的车载类别的0.0001级和竞争Mota处实现了不匹配的比率。我们的不匹配比率比任何先前发表的方法低一倍。在NUSCENes上报告了类似的结果。我们相信拟议的不朽追踪器可以为推动3DMOT的极限提供简单而强大的解决方案。我们的代码可在https://github.com/immortaltracker/immortaltracker中找到。
translated by 谷歌翻译
服务机器人安全有礼貌的机器人需要坚强地跟踪周围人,尤其是对于旅游指南机器人(TGR)。但是,由于以下原因,现有的多对象跟踪(MOT)或多人跟踪(MPT)方法不适用于TGR:1。缺乏相关的大型数据集;2.缺少适用的指标来评估跟踪器。在这项工作中,我们针对TGR的视觉感知任务,并介绍TGRDB数据集,TGRDB数据集是一种新颖的大型多人跟踪数据集,其中包含大约5.6小时的带注释视频和超过450个长期轨迹。此外,我们提出了一个更适合使用数据集评估跟踪器的指标。作为我们工作的一部分,我们提出了TGRMPT,这是一种新型的MPT系统,它结合了头部肩膀和全身的信息,并实现了最先进的性能。我们已经在https://github.com/wenwenzju/tgrmpt中发布了代码和数据集。
translated by 谷歌翻译
本文研究了涉及对象集,对象检测,实例级分段和多对象跟踪的基本视觉任务的性能评估标准。现有标准的算法排名可能会以不同的参数选择波动,例如联合(IOU)阈值的交叉点使他们的评估不可靠。更重要的是,没有能够验证我们是否可以相信标准的评估。这项工作提出了对性能标准的可信赖性的概念,该概念需要(i)对可靠性的参数鲁棒性,(ii)理智测试中的上下文意义,以及(iii)与数学要求(例如度量属性)的一致性。我们观察到这些要求被许多广泛使用的标准忽略了,并使用一组形状的指标探索替代标准。我们还根据建议的可信度要求评估所有这些标准。
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
Accurate representation and localization of relevant objects is important for robots to perform tasks. Building a generic representation that can be used across different environments and tasks is not easy, as the relevant objects vary depending on the environment and the task. Furthermore, another challenge arises in agro-food environments due to their complexity, and high levels of clutter and occlusions. In this paper, we present a method to build generic representations in highly occluded agro-food environments using multi-view perception and 3D multi-object tracking. Our representation is built upon a detection algorithm that generates a partial point cloud for each detected object. The detected objects are then passed to a 3D multi-object tracking algorithm that creates and updates the representation over time. The whole process is performed at a rate of 10 Hz. We evaluated the accuracy of the representation on a real-world agro-food environment, where it was able to successfully represent and locate tomatoes in tomato plants despite a high level of occlusion. We were able to estimate the total count of tomatoes with a maximum error of 5.08% and to track tomatoes with a tracking accuracy up to 71.47%. Additionally, we showed that an evaluation using tracking metrics gives more insight in the errors in localizing and representing the fruits.
translated by 谷歌翻译
当前的多类多类别对象跟踪(MOT)指标使用类标签来分组跟踪结果以进行每类评估。同样,MOT方法通常仅将对象与相同的类预测相关联。这两种MOT中的普遍策略隐含地假设分类性能几乎完美。但是,这远非最近的大型MOT数据集中的情况,这些数据集包含许多罕见或语义上类似类别的类别。因此,所得的不正确分类导致跟踪器的基准跟踪和基准不足。我们通过将分类与跟踪无关,以解决这些问题。我们引入了一个新的指标,跟踪所有准确性(TETA),将跟踪测量测量分为三个子因素:本地化,关联和分类,即使在不准确的分类下,也可以全面地跟踪性能的基准测试。 TETA还处理了大规模跟踪数据集中具有挑战性的不完整注释问题。我们进一步介绍了使用类示例匹配(CEM)执行关联的每件事跟踪器(TETER)。我们的实验表明,TETA对跟踪器进行更全面的评估,并且与最先进的ART相比,TETE对挑战性的大规模数据集BDD100K和TAO进行了重大改进。
translated by 谷歌翻译
由于卷积神经网络(CNN)在过去的十年中检测成功,多对象跟踪(MOT)通过检测方法的使用来控制。随着数据集和基础标记网站的发布,研究方向已转向在跟踪时在包括重新识别对象的通用场景(包括重新识别(REID))上的最佳准确性。在这项研究中,我们通过提供专用的行人数据集并专注于对性能良好的多对象跟踪器的深入分析来缩小监视的范围)现实世界应用的技术。为此,我们介绍SOMPT22数据集;一套新的,用于多人跟踪的新套装,带有带注释的简短视频,该视频从位于杆子上的静态摄像头捕获,高度为6-8米,用于城市监视。与公共MOT数据集相比,这提供了室外监视的MOT的更为集中和具体的基准。我们分析了该新数据集上检测和REID网络的使用方式,分析了将MOT跟踪器分类为单发和两阶段。我们新数据集的实验结果表明,SOTA远非高效率,而单一跟踪器是统一快速执行和准确性的良好候选者,并具有竞争性的性能。该数据集将在以下网址提供:sompt22.github.io
translated by 谷歌翻译
3D多对象跟踪(MOT)确保在连续动态检测过程中保持一致性,有利于自动驾驶中随后的运动计划和导航任务。但是,基于摄像头的方法在闭塞情况下受到影响,准确跟踪基于激光雷达的方法的对象的不规则运动可能是具有挑战性的。某些融合方法效果很好,但不认为在遮挡下出现外观特征的不可信问题。同时,错误检测问题也显着影响跟踪。因此,我们根据组合的外观运动优化(Camo-Mot)提出了一种新颖的相机融合3D MOT框架,该框架使用相机和激光镜数据,并大大减少了由遮挡和错误检测引起的跟踪故障。对于遮挡问题,我们是第一个提出遮挡头来有效地选择最佳对象外观的人,从而减少了闭塞的影响。为了减少错误检测在跟踪中的影响,我们根据置信得分设计一个运动成本矩阵,从而提高了3D空间中的定位和对象预测准确性。由于现有的多目标跟踪方法仅考虑一个类别,因此我们还建议建立多类损失,以在多类别场景中实现多目标跟踪。在Kitti和Nuscenes跟踪基准测试上进行了一系列验证实验。我们提出的方法在KITTI测试数据集上的所有多模式MOT方法中实现了最先进的性能和最低的身份开关(IDS)值(CAR为23,行人为137)。并且我们提出的方法在Nuscenes测试数据集上以75.3%的AMOTA进行了所有算法中的最新性能。
translated by 谷歌翻译
为了克服多个对象跟踪任务中的挑战,最近的算法将交互线索与运动和外观特征一起使用。这些算法使用图形神经网络或变压器来提取导致高计算成本的交互功能。在本文中,提出了一种基于几何特征的新型交互提示,旨在检测遮挡和重新识别计算成本低的丢失目标。此外,在大多数算法中,摄像机运动被认为可以忽略不计,这是一个强有力的假设,并不总是正确的,并且导致目标转换或目标不匹配。在本文中,提出了一种测量相机运动和删除其效果的方法,可有效地降低相机运动对跟踪的影响。该算法在MOT17和MOT20数据集上进行了评估,并在MOT20上实现了MOT17的最先进性能和可比较的结果。该代码也可以公开使用。
translated by 谷歌翻译
多个现有基准测试涉及视频中的跟踪和分割对象,例如,视频对象细分(VOS)和多对象跟踪和分割(MOTS)(MOTS),但是由于使用不同的基准标准数据集和指标,它们之间几乎没有相互作用(例如J&F,J&F,J&F,J&F,地图,smotsa)。结果,已发表的作品通常针对特定的基准,并且不容易相互媲美。我们认为,可以解决多个任务的广义方法的发展需要在这些研究子社区中更大的凝聚力。在本文中,我们旨在通过提出爆发来促进这一点,该数据集包含数千个带有高质量对象掩码的视频,以及一个相关的基准标准,其中包含六个任务,涉及视频中的对象跟踪和细分。使用相同的数据和可比较的指标对所有任务进行评估,这使研究人员能够一致考虑它们,因此更有效地从不同任务的不同方法中汇集了知识。此外,我们为所有任务展示了几个基线,并证明可以将一个任务的方法应用于另一个任务,并具有可量化且可解释的性能差异。数据集注释和评估代码可在以下网址获得:https://github.com/ali2500/burst-benchmark。
translated by 谷歌翻译
3D多对象跟踪(MOT)近年来目睹了众多新颖的基准和方法,尤其是那些在“逐侦测”范式下的基准。尽管他们的进步和有用,但对他们的优势和劣势的深入分析尚不可用。在本文中,我们通过将它们分解为四个组成部分来总结当前的3D MOL方法:检测,关联,运动模型和生命周期管理的预处理。然后,我们将现有算法的故障情况归因于每个组件并详细研究它们。基于分析,我们提出了相应的改进,导致强大但简单的基线:简单进展。 Waymo Open DataSet和Nuscenes上的综合实验结果表明,我们的最终方法可以通过微小的修改来实现新的最先进的结果。此外,我们采取额外的步骤并重新思考当前的基准面是否真实地反映了真实挑战的算法能力。我们深入了解现有基准的细节,并找到一些有趣的事实。最后,我们分析了\ name \中剩余失败的分布和原因,并提出了3D MOT的未来方向。我们的代码可在https://github.com/tusimple/simpletrack获得。
translated by 谷歌翻译
3D对象检测是安全关键型机器人应用(如自主驾驶)的关键模块。对于这些应用,我们最关心检测如何影响自我代理人的行为和安全性(Egocentric观点)。直观地,当它更有可能干扰自我代理商的运动轨迹时,我们寻求更准确的对象几何描述。然而,基于箱交叉口(IOU)的电流检测指标是以对象为中心的,并且不设计用于捕获物体和自助代理之间的时空关系。为了解决这个问题,我们提出了一种新的EnoCentric测量来评估3D对象检测,即支持距离误差(SDE)。我们基于SDE的分析显示,EPECENTIC检测质量由边界框的粗糙几何形状界定。鉴于SDE将从更准确的几何描述中受益的洞察力,我们建议将物体代表为Amodal轮廓,特别是Amodal星形多边形,并设计简单的模型,椋鸟,预测这种轮廓。我们对大型Waymo公开数据集的实验表明,与IOU相比,SDE更好地反映了检测质量对自我代理人安全的影响;恒星的估计轮廓始终如一地改善最近的3D对象探测器的Enocentric检测质量。
translated by 谷歌翻译
对象探测器对于许多现代计算机视觉应用至关重要。但是,即使是最新的对象探测器也不是完美的。在两个看起来与人眼类似的图像上,同一探测器可以做出不同的预测,因为摄像机传感器噪声和照明变化等小图像变形。这个问题称为不一致。现有的准确性指标不能正确解释不一致的情况,并且在该领域的类似工作仅针对人造图像扭曲的改善。因此,我们提出了一种使用非人工视频框架来测量对象检测一致性,随着时间的流逝,跨帧的方法来测量对象检测一致性。使用此方法,我们表明,来自多个对象跟踪挑战的不同视频数据集,现代对象检测器的一致性范围从83.2%至97.1%。最后,我们表明应用图像失真校正(例如.WEBP图像压缩和UNSHARP遮罩)可以提高一致性多达5.1%,而准确性没有损失。
translated by 谷歌翻译