深钢筋学习中的确定性和随机技术已成为改善运动控制和各种机器人的决策任务的有前途的解决方案。先前的工作表明,这些深-RL算法通常可以应用于一般的移动机器人的无MAP导航。但是,他们倾向于使用简单的传感策略,因为已经证明它们在高维状态空间(例如基于图像的传感的空间)方面的性能不佳。本文在执行移动机器人无地图导航的任务时,对两种深-RL技术 - 深确定性政策梯度(DDPG)和软参与者(SAC)进行了比较分析。我们的目标是通过展示神经网络体系结构如何影响学习本身的贡献,并根据每种方法的航空移动机器人导航的时间和距离提出定量结果。总体而言,我们对六个不同体系结构的分析强调了随机方法(SAC)更好地使用更深的体系结构,而恰恰相反发生在确定性方法(DDPG)中。
translated by 谷歌翻译
本文介绍了一种新型深度加强基于基于深度加强学习的3D Fapless导航系统(无人机)。我们提出了一个简单的学习系统,而不是使用一种简单的学习系统,该系统仅使用来自距离传感器的一些稀疏范围数据来训练学习代理。我们基于我们对两种最先进的双重评论家深度RL模型的方法:双延迟深度确定性政策梯度(TD3)和软演员 - 评论家(SAC)。我们表明,我们的两种方法可以基于深度确定性政策梯度(DDPG)技术和Bug2算法来胜过一种方法。此外,我们基于经常性神经网络(RNNS)的新的深度RL结构优于用于执行移动机器人的FAPLESS导航的当前结构。总体而言,我们得出结论,基于双重评论评价的深度RL方法与经常性神经网络(RNNS)更适合进行熔化的导航和避免无人机。
translated by 谷歌翻译
先前的工作表明,深-RL可以应用于无地图导航,包括混合无人驾驶空中水下车辆(Huauvs)的中等过渡。本文介绍了基于最先进的演员批评算法的新方法,以解决Huauv的导航和中型过渡问题。我们表明,具有复发性神经网络的双重评论家Deep-RL可以使用仅范围数据和相对定位来改善Huauvs的导航性能。我们的深-RL方法通过通过不同的模拟场景对学习的扎实概括,实现了更好的导航和过渡能力,表现优于先前的方法。
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
In order to avoid conventional controlling methods which created obstacles due to the complexity of systems and intense demand on data density, developing modern and more efficient control methods are required. In this way, reinforcement learning off-policy and model-free algorithms help to avoid working with complex models. In terms of speed and accuracy, they become prominent methods because the algorithms use their past experience to learn the optimal policies. In this study, three reinforcement learning algorithms; DDPG, TD3 and SAC have been used to train Fetch robotic manipulator for four different tasks in MuJoCo simulation environment. All of these algorithms are off-policy and able to achieve their desired target by optimizing both policy and value functions. In the current study, the efficiency and the speed of these three algorithms are analyzed in a controlled environment.
translated by 谷歌翻译
随着行业的发展,无人机出现在各个领域。近年来,深厚的强化学习在游戏中取得了令人印象深刻的收益,我们致力于将深入的强化学习算法应用于机器人技术领域,将强化学习算法从游戏场景转移到现实世界中的应用程序场景。我们受到Openai Gym的Lunarlander的启发,我们决定在强化学习领域进行大胆的尝试以控制无人机。目前,在机器人控制上应用强化学习算法仍然缺乏工作,与机器人控制有关的物理模拟平台仅适用于经典算法的验证,并且不适合访问培训的增强学习算法。在本文中,我们将面对这个问题,弥合物理模拟平台和智能代理之间的差距,将智能代理连接到物理模拟平台,使代理可以在近似现实世界的模拟器中学习和完成无人机飞行任务。我们提出了一个基于凉亭的增强学习框架,该框架是一种物理模拟平台(ROS-RL),并在框架中使用了三个连续的动作空间增强算法来处理无人机自动降落问题。实验显示了算法的有效性,算法是基于强化学习的无人机自动着陆的任务,取得了全面的成功。
translated by 谷歌翻译
在包装交付,交通监控,搜索和救援操作以及军事战斗订婚等不同应用中,对使用无人驾驶汽车(UAV)(无人机)的需求越来越不断增加。在所有这些应用程序中,无人机用于自动导航环境 - 没有人类互动,执行特定任务并避免障碍。自主无人机导航通常是使用强化学习(RL)来完成的,在该学习中,代理在域中充当专家在避免障碍的同时导航环境。了解导航环境和算法限制在选择适当的RL算法以有效解决导航问题方面起着至关重要的作用。因此,本研究首先确定了无人机导航任务,并讨论导航框架和仿真软件。接下来,根据环境,算法特征,能力和不同无人机导航问题的应用程序对RL算法进行分类和讨论,这将帮助从业人员和研究人员为其无人机导航使用情况选择适当的RL算法。此外,确定的差距和机会将推动无人机导航研究。
translated by 谷歌翻译
将深度强化学习(DRL)扩展到多代理领域的研究已经解决了许多复杂的问题,并取得了重大成就。但是,几乎所有这些研究都只关注离散或连续的动作空间,而且很少有作品曾经使用过多代理的深度强化学习来实现现实世界中的环境问题,这些问题主要具有混合动作空间。因此,在本文中,我们提出了两种算法:深层混合软性角色批评(MAHSAC)和多代理混合杂种深层确定性政策梯度(MAHDDPG)来填补这一空白。这两种算法遵循集中式培训和分散执行(CTDE)范式,并可以解决混合动作空间问题。我们的经验在多代理粒子环境上运行,这是一个简单的多代理粒子世界,以及一些基本的模拟物理。实验结果表明,这些算法具有良好的性能。
translated by 谷歌翻译
本文介绍了一些最先进的加强学习算法的基准研究,用于解决两个模拟基于视觉的机器人问题。本研究中考虑的算法包括软演员 - 评论家(SAC),近端政策优化(PPO),内插政策梯度(IPG),以及与后敏感体验重播(她)的变体。将这些算法的性能与Pybullet的两个仿真环境进行比较,称为KukadiverseObjectenV和raceCarzedgymenv。这些环境中的状态观察以RGB图像的形式提供,并且动作空间是连续的,使得它们难以解决。建议许多策略提供在基本上单目标环境的这些问题上实施算法所需的中级后敏感目标。另外,提出了许多特征提取架构在学习过程中纳入空间和时间关注。通过严格的模拟实验,建立了这些组分实现的改进。据我们所知,这种基准测试的基础基础是基于视觉的机器人问题的基准研究,使其成为该领域的新贡献。
translated by 谷歌翻译
Deep Reinforcement Learning is emerging as a promising approach for the continuous control task of robotic arm movement. However, the challenges of learning robust and versatile control capabilities are still far from being resolved for real-world applications, mainly because of two common issues of this learning paradigm: the exploration strategy and the slow learning speed, sometimes known as "the curse of dimensionality". This work aims at exploring and assessing the advantages of the application of Quantum Computing to one of the state-of-art Reinforcement Learning techniques for continuous control - namely Soft Actor-Critic. Specifically, the performance of a Variational Quantum Soft Actor-Critic on the movement of a virtual robotic arm has been investigated by means of digital simulations of quantum circuits. A quantum advantage over the classical algorithm has been found in terms of a significant decrease in the amount of required parameters for satisfactory model training, paving the way for further promising developments.
translated by 谷歌翻译
采用合理的策略是具有挑战性的,但对于智能代理商的智能代理人至关重要,其资源有限,在危险,非结构化和动态环境中工作,以改善系统实用性,降低整体成本并增加任务成功概率。深度强化学习(DRL)帮助组织代理的行为和基于其状态的行为,并代表复杂的策略(行动的组成)。本文提出了一种基于贝叶斯链条的新型分层策略分解方法,将复杂的政策分为几个简单的子手段,并将其作为贝叶斯战略网络(BSN)组织。我们将这种方法整合到最先进的DRL方法中,软演奏者 - 批评者(SAC),并通过组织几个子主管作为联合政策来构建相应的贝叶斯软演奏者(BSAC)模型。我们将建议的BSAC方法与标准连续控制基准(Hopper-V2,Walker2D-V2和Humanoid-V2)在SAC和其他最先进的方法(例如TD3,DDPG和PPO)中进行比较 - Mujoco与Openai健身房环境。结果表明,BSAC方法的有希望的潜力可显着提高训练效率。可以从https://github.com/herolab-uga/bsac访问BSAC的开源代码。
translated by 谷歌翻译
精确农业正在迅速吸引研究,以有效地引入自动化和机器人解决方案,以支持农业活动。葡萄园和果园中的机器人导航在自主监控方面具有竞争优势,并轻松获取农作物来收集,喷涂和执行时必的耗时必要任务。如今,自主导航算法利用了昂贵的传感器,这也需要大量的数据处理计算成本。尽管如此,葡萄园行代表了一个具有挑战性的户外场景,在这种情况下,GPS和视觉进程技术通常难以提供可靠的定位信息。在这项工作中,我们将Edge AI与深度强化学习相结合,以提出一种尖端的轻质解决方案,以解决自主葡萄园导航的问题,而无需利用精确的本地化数据并通过基于灵活的学习方法来克服任务列出的算法。我们训练端到端的感觉运动剂,该端机直接映射嘈杂的深度图像和位置不可稳定的机器人状态信息到速度命令,并将机器人引导到一排的尽头,不断调整其标题以进行无碰撞的无碰撞中央轨迹。我们在现实的模拟葡萄园中进行的广泛实验证明了解决方案的有效性和代理的概括能力。
translated by 谷歌翻译
随着我们日常环境中机器人的存在越来越多,提高社交技能至关重要。尽管如此,社会机器人技术仍然面临许多挑战。一种瓶颈是,由于社会规范的强烈取决于环境,因此需要经常适应机器人行为。例如,与办公室的工人相比,机器人应更仔细地在医院的患者周围进行仔细的导航。在这项工作中,我们将元强化学习(META-RL)作为潜在解决方案进行了研究。在这里,机器人行为是通过强化学习来学习的,需要选择奖励功能,以便机器人学习适合给定环境的行为。我们建议使用一种变异元过程,该过程迅速使机器人的行为适应新的奖励功能。结果,给定一个新的环境,可以快速评估不同的奖励功能,并选择适当的奖励功能。该过程学习奖励函数的矢量表示和可以在这种表示形式下进行条件的元政策。从新的奖励函数中进行观察,该过程确定了其表示形式,并条件元元素对其进行了条件。在研究程序的功能时,我们意识到它遭受了后塌陷的困扰,在表示表示中只有一个尺寸的子集编码有用的信息,从而导致性能降低。我们的第二个贡献是径向基函数(RBF)层,部分减轻了这种负面影响。 RBF层将表示形式提升到较高的维空间,这对于元容器更容易利用。我们证明了RBF层的兴趣以及在四个机器人模拟任务上对社会机器人技术的使用元素使用。
translated by 谷歌翻译
在狭窄的空间中,基于传统层次自治系统的运动计划可能会导致映射,定位和控制噪声引起碰撞。此外,当无映射时,它将被禁用。为了解决这些问题,我们利用深厚的加强学习,可以证明可以有效地进行自我决策,从而在狭窄的空间中自探索而无需地图,同时避免碰撞。具体而言,基于我们的Ackermann-Steering矩形Zebrat机器人及其凉亭模拟器,我们建议矩形安全区域来表示状态并检测矩形形状的机器人的碰撞,以及无需精心制作的奖励功能,不需要增强功能。目的地信息。然后,我们在模拟的狭窄轨道中基准了五种增强学习算法,包括DDPG,DQN,SAC,PPO和PPO-DISCRETE。经过训练,良好的DDPG和DQN型号可以转移到三个全新的模拟轨道上,然后转移到三个现实世界中。
translated by 谷歌翻译
多代理深入的强化学习已应用于解决各种离散或连续动作空间的各种复杂问题,并取得了巨大的成功。但是,大多数实际环境不能仅通过离散的动作空间或连续的动作空间来描述。而且很少有作品曾经利用深入的加固学习(DRL)来解决混合动作空间的多代理问题。因此,我们提出了一种新颖的算法:深层混合软性角色 - 批评(MAHSAC)来填补这一空白。该算法遵循集中式训练但分散执行(CTDE)范式,并扩展软actor-Critic算法(SAC),以根据最大熵在多机构环境中处理混合动作空间问题。我们的经验在一个简单的多代理粒子世界上运行,具有连续的观察和离散的动作空间以及一些基本的模拟物理。实验结果表明,MAHSAC在训练速度,稳定性和抗干扰能力方面具有良好的性能。同时,它在合作场景和竞争性场景中胜过现有的独立深层学习方法。
translated by 谷歌翻译
我们提出了Covy - 一个机器人平台,可在Covid-19等大流行期间促进社会疏远。Covy具有一种新颖的复合视觉系统,使其能够检测到社会距离的破坏,最多可达16m。Covy使用混合导航堆栈自动地导航其周围环境,该堆栈结合了深钢筋学习(DRL)和概率定位方法。我们通过模拟和现实环境中的大量实验构建了完整的系统并评估了Covy的性能。除其他外,我们的结果表明,与基于DRL的纯解决方案相比,混合导航堆栈更强大。
translated by 谷歌翻译
多机器人导航是一项具有挑战性的任务,其中必须在动态环境中同时协调多个机器人。我们应用深入的加固学习(DRL)来学习分散的端到端策略,该政策将原始传感器数据映射到代理的命令速度。为了使政策概括,培训是在不同的环境和场景中进行的。在常见的多机器人场景中测试和评估了学识渊博的政策,例如切换一个地方,交叉路口和瓶颈情况。此策略使代理可以从死端恢复并浏览复杂的环境。
translated by 谷歌翻译
本文研究了如何改善接受深入增强学习训练的导航剂的概括性能和学习速度(DRL)。尽管DRL在无机MAP导航中表现出巨大的潜力,但在训练场景中表现良好的DRL代理在不熟悉的情况下经常表现不佳。在这项工作中,我们建议LIDAR读数的表示是代理商效果退化的关键因素,并提出了一种强大的输入预处理(IP)方法来解决此问题。由于这种方法使用适应性的参数倒数函数来预处理激光雷达读数,因此我们将此方法称为IPAPREC及其归一化版本为IPAPRECN。 IPAPREC/IPAPRECN可以突出显示重要的短距离值,并压缩激光扫描中较重要的长距离值的范围,该值很好地解决了由激光扫描的常规表示引起的问题。通过广泛的模拟和现实世界实验来验证它们的高性能。结果表明,与常规方法相比,我们的方法可以大大改善导航剂的概括性能,并大大减少训练时间。
translated by 谷歌翻译
学习玩乒乓球是机器人的一个具有挑战性的任务,作为所需的各种笔画。最近的进展表明,深度加强学习(RL)能够在模拟环境中成功地学习最佳动作。然而,由于高勘探努力,RL在实际情况中的适用性仍然有限。在这项工作中,我们提出了一个现实的模拟环境,其中多种模型是为球的动态和机器人的运动学而建立的。代替训练端到端的RL模型,提出了一种具有TD3骨干的新的政策梯度方法,以基于击球时间基于球的预测状态来学习球拍笔划。在实验中,我们表明,所提出的方法显着优于仿真中现有的RL方法。此外,将域从仿真跨越现实,我们采用了一个有效的再培训方法,并在三种实际情况下测试。由此产生的成功率为98%,距离误差约为24.9厘米。总培训时间约为1.5小时。
translated by 谷歌翻译