标准空间卷积假设具有常规邻域结构的输入数据。现有方法通常通过修复常规“视图”来概括对不规则点云域的卷积。固定的邻域大小,卷积内核大小对于每个点保持不变。然而,由于点云不是像图像的结构,所以固定邻权给出了不幸的感应偏压。我们提出了一个名为digress图卷积(diffconv)的新图表卷积,不依赖常规视图。DiffConv在空间 - 变化和密度扩张的邻域上操作,其进一步由学习屏蔽的注意机制进行了进一步调整。我们在ModelNet40点云分类基准测试中验证了我们的模型,获得最先进的性能和更稳健的噪声,以及更快的推广速度。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer(PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation, semantic segmentation and normal estimation tasks.
translated by 谷歌翻译
随着激光雷达传感器和3D视觉摄像头的扩散,3D点云分析近年来引起了重大关注。经过先驱工作点的成功后,基于深度学习的方法越来越多地应用于各种任务,包括3D点云分段和3D对象分类。在本文中,我们提出了一种新颖的3D点云学习网络,通过选择性地执行具有动态池的邻域特征聚合和注意机制来提出作为动态点特征聚合网络(DPFA-NET)。 DPFA-Net有两个可用于三维云的语义分割和分类的变体。作为DPFA-NET的核心模块,我们提出了一个特征聚合层,其中每个点的动态邻域的特征通过自我注意机制聚合。与其他分割模型相比,来自固定邻域的聚合特征,我们的方法可以在不同层中聚合来自不同邻居的特征,在不同层中为查询点提供更具选择性和更广泛的视图,并更多地关注本地邻域中的相关特征。此外,为了进一步提高所提出的语义分割模型的性能,我们提出了两种新方法,即两级BF-Net和BF-Rengralization来利用背景前台信息。实验结果表明,所提出的DPFA-Net在S3DIS数据集上实现了最先进的整体精度分数,在S3DIS数据集上进行了语义分割,并在不同的语义分割,部分分割和3D对象分类中提供始终如一的令人满意的性能。与其他方法相比,它也在计算上更有效。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel endto-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-theart robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https: //github.com/yanx27/PointASNL.
translated by 谷歌翻译
通过当地地区的点特征聚合来捕获的细粒度几何是对象识别和场景理解在点云中的关键。然而,现有的卓越点云骨架通常包含最大/平均池用于局部特征聚集,这在很大程度上忽略了点的位置分布,导致细粒结构组装不足。为了缓解这一瓶颈,我们提出了一个有效的替代品,可以使用新颖的图形表示明确地模拟了本地点之间的空间关系,并以位置自适应方式聚合特征,从而实现位置敏感的表示聚合特征。具体而言,Papooling分别由两个关键步骤,图形结构和特征聚合组成,分别负责构造与将中心点连接的边缘与本地区域中的每个相邻点连接的曲线图组成,以将它们的相对位置信息映射到通道 - 明智的细心权重,以及基于通过图形卷积网络(GCN)的生成权重自适应地聚合局部点特征。 Papooling简单而且有效,并且足够灵活,可以随时为PointNet ++和DGCNN等不同的流行律源,作为即插即说运算符。关于各种任务的广泛实验,从3D形状分类,部分分段对场景分割良好的表明,伪装可以显着提高预测准确性,而具有最小的额外计算开销。代码将被释放。
translated by 谷歌翻译
有效处理3D数据一直是一个挑战。大规模点云上的空间操作以稀疏数据存储,需要额外的成本。由于变形金刚的成功吸引,研究人员正在使用多头关注视力任务。但是,变压器中的注意力计算在输入数量和点云等集合的空间直觉中具有二次复杂性。我们重新设计了这项工作中的“变压器”,并将它们纳入形状分类以及部分和场景细分的层次结构框架中。我们建议我们的当地注意力单元,该单元捕获了空间社区的特征。我们还通过利用每次迭代的采样和分组来计算有效且动态的全局交叉注意。最后,为了减轻点云的非异质性,我们提出了一个有效的多尺度令牌化(MST),该标记(MST)提取了尺度不变的令牌以供注意操作。所提出的分层模型以平均准确性实现最新的形状分类,并以先前的分割方法的相同,同时需要更少的计算。我们提出的体系结构预测分割标签的标签约为以前最有效方法的延迟和参数计数的一半,具有可比的性能。该代码可从https://github.com/yigewang-whu/cloudattention获得。
translated by 谷歌翻译
我们提出了一种基于注意力的新型机制,可以学习用于点云处理任务的增强点特征,例如分类和分割。与先前的作品不同,该作品经过培训以优化预选的一组注意点的权重,我们的方法学会了找到最佳的注意点,以最大程度地提高特定任务的性能,例如点云分类。重要的是,我们主张使用单个注意点来促进语义理解在点特征学习中。具体而言,我们制定了一种新的简单卷积,该卷积结合了输入点及其相应学习的注意点或膝盖的卷积特征。我们的注意机制可以轻松地纳入最新的点云分类和分割网络中。对诸如ModelNet40,ShapenetPart和S3DIS之类的常见基准测试的广泛实验都表明,我们的支持LAP的网络始终优于各自的原始网络,以及其他竞争性替代方案,这些替代方案在我们的膝盖下采用了多个注意力框架。
translated by 谷歌翻译
变压器在图像处理领域取得了显着的成就。受到这一巨大成功的启发,变形金刚在3D点云处理中的应用引起了越来越多的关注。本文提出了一个新颖的点云表示学习网络,具有双重自我注意的3D点云变压器(3DPCT)和一个编码器解码器结构。具体而言,3DPCT具有一个层次编码器,该编码器包含两个用于分类任务的局部全球双重注意模块(分段任务的三个模块),每个模块都包含一个局部特征聚合(LFA)块和全局特征学习( GFL)块。 GFL块是双重的自我注意事项,既有在点上的自我注意力,又可以提高特征提取。此外,在LFA中,为更好地利用了提取的本地信息,设计了一种新颖的点自我发明模型,称为点斑点自我注意力(PPSA)。在分类和分割数据集上都评估了性能,其中包含合成数据和现实世界数据。广泛的实验表明,所提出的方法在分类和分割任务上都达到了最新的结果。
translated by 谷歌翻译
注意机制在点云分析中发挥了越来越重要的作用,并且渠道注意是热点之一。通过这么多的频道信息,神经网络难以筛选有用的信道信息。因此,提出了一种自适应信道编码机制以在本文中捕获信道关系。它通过明确地编码其特征信道之间的相互依赖来提高网络生成的表示的质量。具体地,提出了一种通道 - 明智的卷积(通道-Chim)以自适应地学习坐标和特征之间的关系,以便编码信道。与流行的重量方案不同,本文提出的通道CONN实现了卷积操作的适应性,而不是简单地为频道分配不同的权重。对现有基准的广泛实验验证了我们的方法实现了艺术的状态。
translated by 谷歌翻译
机载激光扫描(ALS)点云的分类是遥感和摄影测量场的关键任务。尽管最近基于深度学习的方法取得了令人满意的表现,但他们忽略了接受场的统一性,这使得ALS点云分类对于区分具有复杂结构和极端规模变化的区域仍然具有挑战性。在本文中,为了配置多受感受性的场特征,我们提出了一个新型的接受场融合和分层网络(RFFS-NET)。以新颖的扩张图卷积(DGCONV)及其扩展环形扩张卷积(ADCONV)作为基本的构建块,使用扩张和环形图融合(Dagfusion)模块实现了接受场融合过程,该模块获得了多受感染的场特征代表通过捕获带有各种接收区域的扩张和环形图。随着计算碱基的计算基础,使用嵌套在RFFS-NET中的多级解码器进行的接收场的分层,并由多层接受场聚集损失(MRFALOSS)驱动,以驱动网络驱动网络以学习在具有不同分辨率的监督标签的方向。通过接受场融合和分层,RFFS-NET更适应大型ALS点云中具有复杂结构和极端尺度变化区域的分类。在ISPRS Vaihingen 3D数据集上进行了评估,我们的RFFS-NET显着优于MF1的基线方法5.3%,而MIOU的基线方法的总体准确性为82.1%,MF1的总准确度为71.6%,MIOU的MF1和MIOU为58.2%。此外,LASDU数据集和2019 IEEE-GRSS数据融合竞赛数据集的实验显示,RFFS-NET可以实现新的最新分类性能。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
We present Kernel Point Convolution 1 (KPConv), a new design of point convolution, i.e. that operates on point clouds without any intermediate representation. The convolution weights of KPConv are located in Euclidean space by kernel points, and applied to the input points close to them. Its capacity to use any number of kernel points gives KP-Conv more flexibility than fixed grid convolutions. Furthermore, these locations are continuous in space and can be learned by the network. Therefore, KPConv can be extended to deformable convolutions that learn to adapt kernel points to local geometry. Thanks to a regular subsampling strategy, KPConv is also efficient and robust to varying densities. Whether they use deformable KPConv for complex tasks, or rigid KPconv for simpler tasks, our networks outperform state-of-the-art classification and segmentation approaches on several datasets. We also offer ablation studies and visualizations to provide understanding of what has been learned by KPConv and to validate the descriptive power of deformable KPConv.
translated by 谷歌翻译
MLP-MIXER新出现为反对CNNS和变压器领域的新挑战者。尽管与变压器相比,尽管其相比,频道混合MLP和令牌混合MLP的概念可以在视觉识别任务中实现明显的性能。与图像不同,点云本身稀疏,无序和不规则,这限制了MLP-MILER用于点云理解的直接使用。在本文中,我们提出了一种通用点集运算符,其促进非结构化3D点之间的信息共享。通过简单地用SoftMax函数替换令牌混合的MLP,PointMixer可以在点集之间“混合”功能。通过这样做,可以在网络中广泛地使用PointMixer作为设定间混合,内部混合和金字塔混合。广泛的实验表明了对基于变压器的方法的语义分割,分类和点重建中的引光器竞争或卓越的性能。
translated by 谷歌翻译
借助深度学习范式,许多点云网络已经发明了用于视觉分析。然而,由于点云数据的给定信息尚未完全利用,因此对这些网络的发展存在很大的潜力。为了提高现有网络在分析点云数据中的有效性,我们提出了一个即插即用模块,PNP-3D,旨在通过涉及更多来自显式3D空间的本地背景和全球双线性响应来改进基本点云特征表示隐含的功能空间。为了彻底评估我们的方法,我们对三个标准点云分析任务进行实验,包括分类,语义分割和对象检测,在那里我们从每个任务中选择三个最先进的网络进行评估。作为即插即用模块,PNP-3D可以显着提高已建立的网络的性能。除了在四个广泛使用的点云基准测试中实现最先进的结果,我们还提供了全面的消融研究和可视化,以展示我们的方法的优势。代码将在https://github.com/shiqiu0419/pnp-3d上获得。
translated by 谷歌翻译
对于不同的任务,已经越来越多地研究了一般点云,并且提出了最近的基于变换器的网络,用于点云分析。然而,医疗点云几乎没有相关的作品,这对疾病检测和治疗很重要。在这项工作中,我们提出了专门用于医疗点云的关注模型,即3D医疗点变压器(3Dmedpt),以检查复杂的生物结构。通过增强上下文信息并在查询时总结本地响应,我们的注意模块可以捕获本地上下文和全局内容功能交互。然而,医疗数据的培训样本不足可能导致特征学习差,因此我们应用位置嵌入,以学习准确的局部几何和多图形推理(MGR)来检查通过通道图的全局知识传播,以丰富特征表示。在数据集内进行的实验证明了3DMedpt的优越性,在那里我们达到了最佳分类和分割结果。此外,我们的方法的有希望的泛化能力在一般的3D点云基准测试中验证:ModelNet40和ShapenetPart。代码即将发布。
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
学习地区内部背景和区域间关系是加强点云分析的特征表示的两项有效策略。但是,在现有方法中没有完全强调的统一点云表示的两种策略。为此,我们提出了一种名为点关系感知网络(PRA-NET)的小说框架,其由区域内结构学习(ISL)模块和区域间关系学习(IRL)模块组成。ISL模块可以通过可差的区域分区方案和基于代表的基于点的策略自适应和有效地将本地结构信息动态地集成到点特征中,而IRL模块可自适应和有效地捕获区域间关系。在涵盖形状分类,关键点估计和部分分割的几个3D基准测试中的广泛实验已经验证了PRA-Net的有效性和泛化能力。代码将在https://github.com/xiwuchen/pra-net上获得。
translated by 谷歌翻译