近年来,神经网络(NNS)的普及及其在现实世界应用中的普遍性的日益普及引起了人们对其验证的重要性的关注。虽然验证在理论上是计算困难的,但在实践中提出了许多解决该验证的技术。在文献中已经观察到,默认情况下,神经网络很少满足我们想要验证的逻辑约束。良好的行动是在验证验证之前训练给定的NN满足上述约束。这个想法有时被称为持续验证,指训练和验证之间的循环。通常,通过将给定正式逻辑语言的翻译指定为损失功能,可以实现带有约束的培训。然后,这些损失功能用于训练神经网络。因为为了培训目的,这些功能需要可区分,因此这些翻译称为可区分逻辑(DL)。这提出了几个研究问题。什么样的可区分逻辑是可能的?在连续验证的背景下,DL的特定选择有什么区别?从最终损失函数的角度来看,DL的理想标准是什么?在这个扩展的摘要中,我们将讨论并回答这些问题。
translated by 谷歌翻译
在本文中,我们建立了模糊和优惠语义之间的联系,用于描述逻辑和自组织地图,这些地图已被提出为可能的候选人来解释类别概括的心理机制。特别是,我们表明,在训练之后的自组织地图的输入/输出行为可以通过模糊描述逻辑解释以及基于概念 - 方面的多次方法语义来描述逻辑解释以及考虑偏好的优先解释关于不同的概念,最近提出了排名和加权污染描述逻辑。可以通过模型检查模糊或优先解释来证明网络的属性。从模糊解释开始,我们还为此神经网络模型提供了概率账户。
translated by 谷歌翻译
知识表示中的一个突出问题是如何应对域名知识的本体的隐性后果来回回答查询。虽然这个问题在描述逻辑本体的领域中已被广泛研究,但在模糊或不精确的知识的背景下,令人惊讶地忽略了忽视,特别是从数学模糊逻辑的角度来看。在本文中,我们研究了应答联合查询和阈值查询的问题。模糊DL-Lite中的本体。具体而言,我们通过重写方法展示阈值查询应答W.r.t.一致的本体中仍保持在数据复杂性的$ AC_0 $中,但该联合查询应答高度依赖于所选三角标准,这对底层语义产生了影响。对于IDEMPodent G \“Odel T-Norm,我们提供了一种基于古典案例的减少的有效方法。本文在理论和实践中正在考虑和逻辑编程(TPLP)的实践。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
最近的工作表明,我们可以在学习系统中使用逻辑背景知识来弥补缺乏标记的培训数据。许多这样的方法通过创建编码此知识的损失函数来起作用。但是,即使在测试时间仍然有用,逻辑通常在训练后会被丢弃。相反,我们通过额外的计算步骤来完善预测来确保神经网络预测能够满足知识。我们介绍了可区分的改进功能,该功能找到了接近原始预测的校正预测。我们研究了如何有效有效地计算这些完善功能。使用新算法,我们结合了改进函数,以找到任何复杂性的逻辑公式的完善预测。该算法在复杂的SAT配方中发现了最佳的改进,以较少的迭代率明显更少,并且经常发现梯度下降无法进行的解决方案。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
我们为训练神经网络的时间逻辑约束提供了一种定理证明方法。我们对有限轨迹(LTL $ _F $)的线性时间逻辑的深层嵌入方式,并在Isabelle Theorem prover的高阶逻辑中表征其语义的相关评估功能。然后,我们继续正式化一个损失函数$ \ MATHCAL {l} $,我们正式证明是合理的,并且与函数$ d \ Mathcal {l} $可区分。随后,我们使用Isabelle的自动代码生成机制来生产LTL $ _F $,$ \ MATHCAL {L} $和$ D \ MATHCAL {l} $的OCAML版本,并通过Python的Ocaml绑定与Pytorch集成在一起。我们表明,当用于动态运动的现有深度学习框架中培训时,我们的方法会为常见运动规范模式(例如避免障碍和巡逻)产生预期的结果。我们方法的独特好处是完全严格的训练方法,消除了直接在诸如Python之类的“不安全”编程语言中的逻辑方面临时实施固有的许多风险。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
形状约束语言(SHACL)是通过验证图表上的某些形状来验证RDF数据的最新W3C推荐语言。先前的工作主要集中在验证问题上,并且仅针对SHACL的简化版本研究了对设计和优化目的至关重要的可满足性和遏制的标准决策问题。此外,SHACL规范不能定义递归定义的约束的语义,这导致文献中提出了几种替代性递归语义。尚未研究这些不同语义与重要决策问题之间的相互作用。在本文中,我们通过向新的一阶语言(称为SCL)的翻译提供了对SHACL的不同特征的全面研究,该语言精确地捕获了SHACL的语义。我们还提出了MSCL,这是SCL的二阶扩展,它使我们能够在单个形式的逻辑框架中定义SHACL的主要递归语义。在这种语言中,我们还提供了对过滤器约束的有效处理,这些滤镜经常在相关文献中被忽略。使用此逻辑,我们为不同的SHACL片段的可满足性和遏制决策问题提供了(联合)可决定性和复杂性结果的详细图。值得注意的是,我们证明这两个问题对于完整的语言都是不可避免的,但是即使面对递归,我们也提供了有趣的功能的可决定性组合。
translated by 谷歌翻译
连续约束满意度问题(CCSP)是一个约束满意度问题(CSP),其间隔域$ u \ subset \ mathbb {r} $。我们进行了一项系统的研究,以对CCSP进行分类,这些CCSP已完成现实的存在理论,即ER完整。为了定义该类别,我们首先考虑ETR问题,该问题也代表了真实的存在理论。在此问题的情况下,我们给出了$ \ compant x_1,\ ldots,x_n \ in \ mathbb {r}的某个句子:\ phi(x_1,\ ldots,x_n)$,其中$ \ phi $ is由符号$ \ {0、1, +,\ cdot,\ geq,>,\ wedge,\ vee,\ neg \} $组成的符号符号的公式正确。 。现在,ER是所有问题的家族,这些家族允许多项式时间降低到ETR。众所周知,np $ \ subseteq $ er $ \ subseteq $ pspace。我们将注意力限制在CCSP上,并具有附加限制($ x + y = z $)和其他一些轻度的技术状况。以前,已经显示出乘法约束($ x \ cdot y = z $),平方约束($ x^2 = y $)或反转约束($ x \ cdot y = 1 $)足以建立ER-完整性。如下所示,我们以最大的平等约束来扩展这一点。我们表明,CCSP(具有附加限制和其他轻度技术状况)具有任何一个表现良好的弯曲平等约束($ f(x,y)= 0 $)的CCSP是ER的曲线限制($ F(x,y)= 0 $)。我们将结果进一步扩展到不平等约束。我们表明,任何行为良好的凸出弯曲且行为良好的凹陷弯曲的不平等约束($ f(x,y)\ geq 0 $ and $ g(x,x,y)\ geq 0 $)暗示着班级的ER完整性这种CCSP。
translated by 谷歌翻译
实用值的逻辑是越来越多的神经符号方法的基础,尽管通常仅在定性上表征其逻辑推理能力。我们为建立此类系统的正确性和力量提供了基础。我们提供了声音和强烈完整的公理化,可以参数化以涵盖所有实现的逻辑,包括所有常见的模糊逻辑。我们的一类句子非常丰富,每个句子都描述了一组现实价值逻辑公式集合的可能的真实值,包括实际值的组合是可能的。强大的完整性使我们能够准确地得出有关公式集合的真实价值组合的组合,给出了有关其他几个公式集合的真实价值组合的信息。然后,我们扩展公理化以处理加权的子形成。最后,我们根据线性编程为某些实价逻辑和某些自然假设提供了基于线性编程的决策程序,无论我们的一组句子在逻辑上是否意味着我们的另一种句子。
translated by 谷歌翻译
ALChour \“Ardenfors的AGM发布,Makinson继续代表与信仰变革有关的研究中的基石。Katsuno和Mendelzon(K&M)通过了AGM假设改变信仰基地,并在命题中的特征agm信仰基地修订有限签名的逻辑。我们概括了K&M在任意Tarskian逻辑中设置的(多个)基本修订版的方法,涵盖了具有经典模型 - 理论语义的所有逻辑,从而涵盖了知识表示和超越的各种逻辑。我们的通用配方适用于“基础”的各种概念(例如信仰集,任意或有限的句子或单句话)。核心结果是表示AGM基本修订运算符和某些“分配”之间双向对应的表示定理:函数映射信仰基础到总数 - 尚未传递 - “偏好”解释之间的关系。与此同时,我们为CAS提供了一个伴侣E当agm andodatience的AGM假设被遗弃时。我们还提供了所有逻辑的表征,我们的结果可以加强生产传递偏好关系的分配(如K&M的原始工作),根据语法依赖与独立性,引起了这种逻辑的两个表示定理。
translated by 谷歌翻译
在过去几年的几十年中,致力于更新稳定模型语义(AKA答案设置程序)下更新逻辑计划的问题,或者换句话说,表现出培养结果的问题 - 当它描述更改时,遵守逻辑程序。而最先进的方法是在古典逻辑背景下的相同基本的直觉和愿望被指导,他们基于根本不同的原则和方法,这阻止了可以拥抱两个信念的统一框架规则更新。在本文中,我们将概述与答案设置的编程更新相关的一些主要方法和结果,同时指出本主题研究的一些主要挑战。
translated by 谷歌翻译
Posibilistic Logic是处理不确定和部分不一致信息的最扩展方法。关于正常形式,可能性推理的进步大多专注于字幕形式。然而,现实世界问题的编码通常导致非人(NC)公式和NC-To-Clausal翻译,产生严重的缺点,严重限制了字符串推理的实际表现。因此,通过计算其原始NC形式的公式,我们提出了几种贡献,表明可能在可能的非字词推理中也是可能的显着进展。 {\ em首先,我们定义了{\ em possibilistic over非词素知识库,}或$ \ mathcal {\ overline {h}} _ \ sigma $的类别,其中包括类:可能主义的喇叭和命题角 - NC。 $ \ mathcal {\ overline {h}} _ \ sigma $被显示为标准喇叭类的一种NC类似的。 {\ em hightly},我们定义{\ em possibilistic非字词单元分辨率,}或$ \ mathcal {u} _ \ sigma $,并证明$ \ mathcal {u} _ \ sigma $正确计算不一致程度$ \ mathcal {\ overline {h}} _ \ sigma $成员。 $ \ Mathcal {Ur} _ \ \ Sigma $之前未提出,并以人为人的方式制定,这会让其理解,正式证明和未来延伸到非人类决议。 {\ em第三},我们证明计算$ \ mathcal {\ overline {h}} _ \ sigma $成员的不一致程度是多项式时间。虽然可能存在于可能存在的逻辑中的贸易课程,但所有这些都是字符串,因此,$ \ mathcal {\ overline {h}} _ \ sigma $ of to是可能的主要推理中的第一个特征的多项式非锁友类。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
神经符号(NESY)集成将符号推理与神经网络(NNS)结合在一起,用于需要感知和推理的任务。大多数NESY系统都依赖于逻辑知识的持续放松,并且在模型管道中没有做出离散决策。此外,这些方法假定给出了符号规则。在本文中,我们提出了深入的符号学习(DSL),这是一个学习NESY函数的NESY系统,即,(集合)感知函数的组成,将连续数据映射到离散符号,以及一组符号功能符号。 DSL同时学习感知和符号功能,同时仅接受其组成(NESY功能)训练。 DSL的关键新颖性是它可以创建内部(可解释的)符号表示形式,并将其映射到可区分的NN学习管道中的感知输入。自动选择创建的符号以生成最能解释数据的符号函数。我们提供实验分析,以证实DSL在同时学习感知和符号功能中的功效。
translated by 谷歌翻译
最近已经提出了几个查询和分数来解释对ML模型的个人预测。鉴于ML型号的灵活,可靠和易于应用的可解释性方法,我们预见了需要开发声明语言以自然地指定不同的解释性查询。我们以原则的方式通过源于逻辑,称为箔,允许表达许多简单但重要的解释性查询,并且可以作为更具表现力解释性语言的核心来实现这一语言。我们研究箔片查询的两类ML模型的计算复杂性经常被视为容易解释:决策树和OBDD。由于ML模型的可能输入的数量是尺寸的指数,因此箔评估问题的易易性是精细的,但是可以通过限制模型的结构或正在评估的箔片段来实现。我们还以高级声明语言包装的箔片的原型实施,并执行实验,表明可以在实践中使用这种语言。
translated by 谷歌翻译
类比制作是人工智能和人工智能的核心,并在这种多样化任务中的应用程序的创造力作为致辞推理,学习,语言习得和故事讲述。本文从第一个原则介绍了一个摘要的类比比例的摘要代数框架,其形式的“$ a $的数量为$ b $ conal通用代数的常规设定中的$ c $ d $ d。这使我们能够以统一的方式比较可能跨越不同域的数学对象,这对于AI系统至关重要。事实证明,我们对类比比例的概念具有吸引力的数学属性。当我们从第一个原则构建我们的模型,只使用普通代数的基本概念,并且我们的模型问题是在文献中预先推出的类似商品比例的一些基本属性,以说服我们模型的合理性的读者,我们表明它可以自然嵌入通过模型 - 理论类型分为一阶逻辑,并从该角度证明类似的比例与结构保留映射兼容。这为其适用性提供了概念证据。在更广泛的意义上,本文是朝着模拟推理和学习系统理论的第一步,其潜在应用于基本的AI问题,如致料语言推理和计算学习和创造力。
translated by 谷歌翻译
神经网络在检测嘈杂数据中的模式方面非常成功,并且已成为许多领域的首选技术。但是,他们对对抗攻击的敏感性阻碍了它们的有用性。最近,已经提出了许多用于衡量和改善网络对对抗性扰动的鲁棒性的方法,并且这项不断增长的研究体现了许多明确或隐性的鲁棒性观念。这些概念之间的联系通常是微妙的,文献中缺少它们之间的系统比较。在本文中,我们开始解决这一差距,通过在网络的培训阶段,其验证和部署之后设置对网络鲁棒性作为数学属性的经验分析和评估的一般原则。然后,我们应用这些原则并进行案例研究,以展示我们一般方法的实际好处。
translated by 谷歌翻译