点过程模型在现实世界应用中非常重要。在某些关键应用程序中,对点过程模型的估计涉及来自用户的大量敏感个人数据。隐私问题自然出现了现有文献中未解决的问题。为了弥合这一明显的差距,我们提出了第一个针对点过程模型的第一个一般差异私人估计程序。具体来说,我们以霍克斯的流程为例,并根据霍克斯流程的离散表示,为事件流数据引入了严格的差异隐私定义。然后,我们提出了两种差异性优化算法,可以有效地估算霍克斯流程模型,并在两个不同的设置下具有所需的隐私和公用事业保证。提供实验以支持我们的理论分析。
translated by 谷歌翻译
Hawkes流程最近从机器学习社区中引起了人们对建模事件序列数据的多功能性的越来越多的关注。尽管它们具有丰富的历史可以追溯到几十年前,但其某些属性(例如用于学习参数的样本复杂性和释放差异化私有版本的样本复杂性)尚未得到彻底的分析。在这项工作中,我们研究了具有背景强度$ \ mu $和激发功能$ \ alpha e^{ - \ beta t} $的标准霍克斯进程。我们提供$ \ mu $和$ \ alpha $的非私人和差异私人估计器,并在两种设置中获得样本复杂性结果以量化隐私成本。我们的分析利用了霍克斯过程的强大混合特性和经典的中央限制定理的结果,结果较弱的随机变量。我们在合成数据集和真实数据集上验证了我们的理论发现。
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
作为推荐系统的主要协作过滤方法,一位矩阵完成需要用户收集的数据来提供个性化服务。由于阴险的攻击和意外推断,用户数据的发布通常会引起严重的隐私问题。为了解决此问题,差异隐私(DP)已在标准矩阵完成模型中广泛使用。但是,迄今为止,关于如何在一位矩阵完成中应用DP来实现隐私保护的知之甚少。在本文中,我们提出了一个统一的框架,以确保使用DP对单位矩阵完成的强大隐私保证。在我们的框架中,我们开发了与一位矩阵完成的不同阶段相对应的四种不同的私人扰动机制。对于每种机制,我们设计一个隐私性算法,并提供在适当条件下绑定的理论恢复误差。关于合成和现实世界数据集的数值实验证明了我们的建议的有效性。与没有隐私保护的一位矩阵完成相比,我们提出的机制可以维持高级隐私保护,而边际丧失完成精度。
translated by 谷歌翻译
我们考虑如何私下分享客观扰动,使用每个实例差异隐私(PDP)所产生的个性化隐私损失。标准差异隐私(DP)为我们提供了一个最坏的绑定,可能是相对于固定数据集的特定个人的隐私丢失的数量级。PDP框架对目标个人的隐私保障提供了更细粒度的分析,但每个实例隐私损失本身可能是敏感数据的函数。在本文中,我们分析了通过客观扰动释放私人经验风险最小化器的每案隐私丧失,并提出一组私下和准确地公布PDP损失的方法,没有额外的隐私费用。
translated by 谷歌翻译
在本文中,通过引入低噪声条件,我们研究了在随机凸出优化(SCO)的环境中,差异私有随机梯度下降(SGD)算法的隐私和效用(概括)表现。对于点心学习,我们建立了订单$ \ Mathcal {o} \ big(\ frac {\ sqrt {\ sqrt {d \ log(1/\ delta)}} {n \ epsilon} \ big)和$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ big(\ frac {\ frac {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt { Mathcal {o} \ big({n^{ - \ frac {1+ \ alpha} {2}}}}}}+\ frac {\ sqrt {d \ log(1/\ delta)}}} )$(\ epsilon,\ delta)$ - 差异化私有SGD算法,分别是较高的和$ \ alpha $ -h \'分别较旧的光滑损失,其中$ n $是样本尺寸,$ d $是维度。对于成对学习,受\ cite {lei2020sharper,lei2021Generalization}的启发,我们提出了一种基于梯度扰动的简单私人SGD算法,该算法满足$(\ epsilon,\ delta)$ - 差异性限制,并开发出了新颖的私密性,并且算法。特别是,我们证明我们的算法可以实现多余的风险利率$ \ MATHCAL {o} \ big(\ frac {1} {\ sqrt {n}}}+\ frac {\ frac {\ sqrt { delta)}}} {n \ epsilon} \ big)$带有梯度复杂性$ \ mathcal {o}(n)$和$ \ mathcal {o} \ big(n^{\ frac {\ frac {2- \ alpha} {1+ alpha} {1+ \ alpha}}}+n \ big)$,用于强烈平滑和$ \ alpha $ -h \'olde R平滑损失。此外,在低噪声环境中建立了更快的学习率,以实现平滑和非平滑损失。据我们所知,这是第一次实用分析,它提供了超过$ \ Mathcal {o} \ big(\ frac {1} {\ sqrt {\ sqrt {n}}+\ frac {\ sqrt {d sqrt {d \ sqrt {d \ sqrt { log(1/\ delta)}}} {n \ epsilon} \ big)$用于隐私提供成对学习。
translated by 谷歌翻译
我们研究了差异私有线性回归的问题,其中每个数据点都是从固定的下高斯样式分布中采样的。我们提出和分析了一个单次迷你批次随机梯度下降法(DP-AMBSSGD),其中每次迭代中的点都在没有替换的情况下进行采样。为DP添加了噪声,但噪声标准偏差是在线估计的。与现有$(\ epsilon,\ delta)$ - 具有子最佳错误界限的DP技术相比,DP-AMBSSGD能够在关键参数(如多维参数)(如多维参数)等方面提供几乎最佳的错误范围$,以及观测值的噪声的标准偏差$ \ sigma $。例如,当对$ d $二维的协变量进行采样时。从正常分布中,然后由于隐私而引起的DP-AMBSSGD的多余误差为$ \ frac {\ sigma^2 d} {n} {n}(1+ \ frac {d} {\ epsilon^2 n})$,即当样本数量$ n = \ omega(d \ log d)$,这是线性回归的标准操作制度时,错误是有意义的。相比之下,在此设置中现有有效方法的错误范围为:$ \ mathcal {o} \ big(\ frac {d^3} {\ epsilon^2 n^2} \ big)$,即使是$ \ sigma = 0 $。也就是说,对于常量的$ \ epsilon $,现有技术需要$ n = \ omega(d \ sqrt {d})$才能提供非平凡的结果。
translated by 谷歌翻译
我们提出并分析了算法,以解决用户级差分隐私约束下的一系列学习任务。用户级DP仅保证只保证个人样本的隐私,而是保护用户的整个贡献($ M \ GE 1 $ Samples),而不是对信息泄漏提供更严格但更现实的保护。我们表明,对于高维平均估计,具有平稳损失,随机凸优化和学习假设类别的经验风险最小化,具有有限度量熵,隐私成本随着用户提供的$ O(1 / \ SQRT {M})$减少更多样本。相比之下,在增加用户数量$ N $时,隐私成本以较快的价格降低(1 / n)$率。我们将这些结果与下界相提并论,显示了我们算法的最低限度估计和随机凸优化的算法。我们的算法依赖于私有平均估计的新颖技术,其任意维度与误差缩放为浓度半径$ \ tai $的分布而不是整个范围。
translated by 谷歌翻译
在本文中,我们研究了差异化的私人经验风险最小化(DP-erm)。已经表明,随着尺寸的增加,DP-MER的(最坏的)效用会减小。这是私下学习大型机器学习模型的主要障碍。在高维度中,某些模型的参数通常比其他参数更多的信息是常见的。为了利用这一点,我们提出了一个差异化的私有贪婪坐标下降(DP-GCD)算法。在每次迭代中,DP-GCD私人沿梯度(大约)最大条目执行坐标梯度步骤。从理论上讲,DP-GCD可以通过利用问题解决方案的结构特性(例如稀疏性或准方面的)来改善实用性,并在早期迭代中取得非常快速的进展。然后,我们在合成数据集和真实数据集上以数值说明。最后,我们描述了未来工作的有前途的方向。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
在共享数据的统计学习和分析中,在联合学习和元学习等平台上越来越广泛地采用,有两个主要问题:隐私和鲁棒性。每个参与的个人都应该能够贡献,而不会担心泄露一个人的敏感信息。与此同时,系统应该在恶意参与者的存在中插入损坏的数据。最近的算法在学习中,学习共享数据专注于这些威胁中的一个,使系统容易受到另一个威胁。我们弥合了这个差距,以获得估计意思的规范问题。样品。我们介绍了素数,这是第一算法,实现了各种分布的隐私和鲁棒性。我们通过新颖的指数时间算法进一步补充了这一结果,提高了素数的样本复杂性,实现了近最优保证并匹配(非鲁棒)私有平均估计的已知下限。这证明没有额外的统计成本同时保证隐私和稳健性。
translated by 谷歌翻译
当算法的内部状态\ emph {private}时,迭代随机学习算法的信息泄漏是什么?每个特定培训时期对通过已发布的模型泄漏的贡献是多少?我们研究了此问题的嘈杂梯度下降算法,并在整个训练过程中对r \'enyi差异隐私损失的\ emph {dynamics}进行建模。我们的分析跟踪了\ emph {tigh}绑定在r \'enyi差异上的一对概率分布之间的差异,而不是在相邻数据集中训练的模型的参数。我们证明,隐私损失对平稳且强烈凸出的损失函数的呈指数呈指数收敛,这是对组成定理的显着改进(通过在所有中间梯度计算中,其总价值高于其总价值来过度估计隐私损失)。对于Lipschitz,光滑且强烈凸出的损失功能,我们证明了最佳效用,具有较小的梯度复杂性,用于嘈杂的梯度下降算法。
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
近年来,保护隐私数据分析已成为普遍存在。在本文中,我们提出了分布式私人多数票投票机制,以解决分布式设置中的标志选择问题。为此,我们将迭代剥离应用于稳定性函数,并使用指数机制恢复符号。作为应用程序,我们研究了分布式系统中的平均估计和线性回归问题的私人标志选择。我们的方法与非私有场景一样,用最佳的信噪比恢复了支持和标志,这比私人变量选择的现代作品要好。此外,符号选择一致性具有理论保证是合理的。进行了模拟研究以证明我们提出的方法的有效性。
translated by 谷歌翻译
我们考虑一个顺序设置,其中使用单个数据集用于执行自适应选择的分析,同时确保每个参与者的差别隐私丢失不超过预先指定的隐私预算。此问题的标准方法依赖于限制所有个人对所有个人的隐私损失的最坏情况估计,以及每个单一分析的所有可能的数据值。然而,在许多情况下,这种方法过于保守,特别是对于“典型”数据点,通过参与大部分分析产生很少的隐私损失。在这项工作中,我们基于每个分析中每个人的个性化隐私损失估计的价值,给出了更严格的隐私损失会计的方法。实现我们设计R \'enyi差异隐私的过滤器。过滤器是一种工具,可确保具有自适应选择的隐私参数的组合算法序列的隐私参数不超过预先预算。我们的过滤器比以往的$(\ epsilon,\ delta)$ - rogers等人的差别隐私更简单且更紧密。我们将结果应用于对嘈杂渐变下降的分析,并显示个性化会计可以实用,易于实施,并且只能使隐私式权衡更紧密。
translated by 谷歌翻译
在本文中,我们研究了非交互性局部差异隐私(NLDP)模型中估计平滑普遍线性模型(GLM)的问题。与其经典设置不同,我们的模型允许服务器访问一些其他公共但未标记的数据。在本文的第一部分中,我们专注于GLM。具体而言,我们首先考虑每个数据记录均为I.I.D.的情况。从零均值的多元高斯分布中取样。由Stein的引理动机,我们提出了GLMS的$(Epsilon,\ delta)$ -NLDP算法。此外,算法的公共数据和私人数据的示例复杂性以实现$ \ alpha $的$ \ ell_2 $ -norm估计错误(具有高概率)为$ {o}(p \ alpha^{ - 2})$和$ \ tilde {o}(p^3 \ alpha^{ - 2} \ epsilon^{ - 2})$,其中$ p $是特征向量的维度。这是对$ \ alpha^{ - 1} $中先前已知的指数或准过程的重大改进,或者在$ p $中的指数smack sample sample smack glms的复杂性,没有公共数据。然后,我们考虑一个更通用的设置,每个数据记录为I.I.D.从某些次高斯分布中取样,有限制的$ \ ell_1 $ -norm。基于Stein的引理的变体,我们提出了一个$(\ epsilon,\ delta)$ - NLDP算法,用于GLMS的公共和私人数据的样本复杂性,以实现$ \ ell_ \ elfty $ - infty $ -NOMM估计的$ \ alpha误差$是$ is $ {o}(p^2 \ alpha^{ - 2})$和$ \ tilde {o}(p^2 \ alpha^{ - 2} \ epsilon^{ - 2})$,温和的假设,如果$ \ alpha $不太小({\ em i.e.,} $ \ alpha \ geq \ omega(\ frac {1} {\ sqrt {p}}})$)。在本文的第二部分中,我们将我们的想法扩展到估计非线性回归的问题,并显示出与多元高斯和次高斯案例的GLMS相似的结果。最后,我们通过对合成和现实世界数据集的实验来证明算法的有效性。
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
我们研究依靠敏感数据(例如医疗记录)的环境的顺序决策中,研究隐私的探索。特别是,我们专注于解决在线性MDP设置中受(联合)差异隐私的约束的增强学习问题(RL),在该设置中,动态和奖励均由线性函数给出。由于Luyo等人而引起的此问题的事先工作。 (2021)实现了$ o(k^{3/5})$的依赖性的遗憾率。我们提供了一种私人算法,其遗憾率提高,最佳依赖性为$ o(\ sqrt {k})$对情节数量。我们强烈遗憾保证的关键配方是策略更新时间表中的适应性,其中仅在检测到数据足够更改时才发生更新。结果,我们的算法受益于低切换成本,并且仅执行$ o(\ log(k))$更新,这大大降低了隐私噪声的量。最后,在最普遍的隐私制度中,隐私参数$ \ epsilon $是一个常数,我们的算法会造成可忽略不计的隐私成本 - 与现有的非私人遗憾界限相比,由于隐私而引起的额外遗憾在低阶中出现了术语。
translated by 谷歌翻译
差异化(DP)随机凸优化(SCO)在可信赖的机器学习算法设计中无处不在。本文研究了DP-SCO问题,该问题是从分布中采样并顺序到达的流媒体数据。我们还考虑了连续发布模型,其中与私人信息相关的参数已在每个新数据(通常称为在线算法)上更新和发布。尽管已经开发了许多算法,以实现不同$ \ ell_p $ norm几何的最佳多余风险,但是没有一个现有的算法可以适应流和持续发布设置。为了解决诸如在线凸优化和隐私保护的挑战,我们提出了一种在线弗兰克 - 沃尔夫算法的私人变体,并带有递归梯度,以减少差异,以更新和揭示每个数据上的参数。结合自适应差异隐私分析,我们的在线算法在线性时间中实现了最佳的超额风险,当$ 1 <p \ leq 2 $和最先进的超额风险达到了非私人较低的风险时,当$ 2 <p \ p \ $ 2 <p \ leq \ infty $。我们的算法也可以扩展到$ p = 1 $的情况,以实现几乎与维度无关的多余风险。虽然先前的递归梯度降低结果仅在独立和分布的样本设置中才具有理论保证,但我们在非平稳环境中建立了这样的保证。为了展示我们方法的优点,我们设计了第一个DP算法,用于具有对数遗憾的高维广义线性土匪。使用多种DP-SCO和DP-Bandit算法的比较实验表现出所提出的算法的功效和实用性。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译