We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256×256 and 3.85 on ImageNet 512×512. We release our code at https://github.com/openai/guided-diffusion.
translated by 谷歌翻译
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive loglikelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/ openai/improved-diffusion.
translated by 谷歌翻译
分类器指南是一种最近引入的方法,可在有条件扩散模型的培训后进行交易模式覆盖范围和样本保真度,其精神与其他类型的生成模型中的低温采样或截断相同。分类器指南将扩散模型的得分估计与图像分类器的梯度相结合,因此需要训练与扩散模型分开的图像分类器。它还提出了一个问题,即在没有分类器的情况下是否可以执行指导。我们表明,确实可以通过没有这样的分类器的纯生成模型来执行指导:在我们所谓的无分类器指导中,我们共同训练有条件的和无条件的扩散模型,我们结合了所得的条件和无条件得分估算样本质量和多样性之间的权衡类似于使用分类器指南获得的样本质量和多样性。
translated by 谷歌翻译
过去十年已经开发了各种各样的深度生成模型。然而,这些模型通常同时努力解决三个关键要求,包括:高样本质量,模式覆盖和快速采样。我们称之为这些要求所征收的挑战是生成的学习Trielemma,因为现有模型经常为他人交易其中一些。特别是,去噪扩散模型表明了令人印象深刻的样本质量和多样性,但它们昂贵的采样尚未允许它们在许多现实世界应用中应用。在本文中,我们认为这些模型中的缓慢采样基本上归因于去噪步骤中的高斯假设,这些假设仅针对小型尺寸的尺寸。为了使得具有大步骤的去噪,从而减少去噪步骤的总数,我们建议使用复杂的多模态分布来模拟去噪分布。我们引入了去噪扩散生成的对抗网络(去噪扩散GANS),其使用多模式条件GaN模拟每个去噪步骤。通过广泛的评估,我们表明去噪扩散GAN获得原始扩散模型的样本质量和多样性,而在CIFAR-10数据集中是2000 $ \时代。与传统的GAN相比,我们的模型表现出更好的模式覆盖和样本多样性。据我们所知,去噪扩散GaN是第一模型,可在扩散模型中降低采样成本,以便允许它们廉价地应用于现实世界应用。项目页面和代码:https://nvlabs.github.io/denoising-diffusion-gan
translated by 谷歌翻译
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
translated by 谷歌翻译
我们表明,级联扩散模型能够在类条件的想象生成基准上生成高保真图像,而无需辅助图像分类器的任何帮助来提高样品质量。级联的扩散模型包括多个扩散模型的流水线,其产生越来越多的分辨率,以最低分辨率的标准扩散模型开始,然后是一个或多个超分辨率扩散模型,其连续上追随图像并添加更高的分辨率细节。我们发现级联管道的样本质量至关重要的是调节增强,我们提出的数据增强较低分辨率调节输入到超级分辨率模型的方法。我们的实验表明,调节增强防止在级联模型中采样过程中的复合误差,帮助我们在256×256分辨率下,在128x128和4.88,优于63.02的分类精度分数,培训级联管道。 %(TOP-1)和84.06%(TOP-5)在256x256,优于VQ-VAE-2。
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
通过将图像形成过程分解成逐个申请的去噪自身额,扩散模型(DMS)实现了最先进的合成导致图像数据和超越。另外,它们的配方允许引导机构来控制图像生成过程而不会再刷新。然而,由于这些模型通常在像素空间中直接操作,因此强大的DMS的优化通常消耗数百个GPU天,并且由于顺序评估,推理是昂贵的。为了在保留其质量和灵活性的同时启用有限计算资源的DM培训,我们将它们应用于强大的佩带自动化器的潜在空间。与以前的工作相比,这种代表上的培训扩散模型允许第一次达到复杂性降低和细节保存之间的近乎最佳点,极大地提高了视觉保真度。通过将跨关注层引入模型架构中,我们将扩散模型转化为强大而柔性的发电机,以进行诸如文本或边界盒和高分辨率合成的通用调节输入,以卷积方式变得可以实现。我们的潜在扩散模型(LDMS)实现了一种新的技术状态,可在各种任务中进行图像修复和高竞争性能,包括无条件图像生成,语义场景合成和超级分辨率,同时与基于像素的DMS相比显着降低计算要求。代码可在https://github.com/compvis/lattent-diffusion获得。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
最近已被证明扩散模型产生高质量的合成图像,尤其是与指导技术配对,以促进忠诚的多样性。我们探索文本条件图像综合问题的扩散模型,并比较了两种不同的指导策略:剪辑指导和自由分类指导。我们发现后者是人类评估者的优选,用于光敏和标题相似度,并且通常产生光素质拟种样品。使用自由分类指导的35亿参数文本条件扩散模型的样本由人类评估者对来自Dall-E的人的人们青睐,即使后者使用昂贵的剪辑重新划分。此外,我们发现我们的模型可以进行微调,以执行图像修复,从而实现强大的文本驱动的图像编辑。我们在过滤的数据集中培训较小的模型,并在https://github.com/openai/glide-text2im释放代码和权重。
translated by 谷歌翻译
生成时间连贯的高保真视频是生成建模研究中的重要里程碑。我们通过提出一个视频生成的扩散模型来取得这一里程碑的进步,该模型显示出非常有希望的初始结果。我们的模型是标准图像扩散体系结构的自然扩展,它可以从图像和视频数据中共同训练,我们发现这可以减少Minibatch梯度的方差并加快优化。为了生成长而更高的分辨率视频,我们引入了一种新的条件抽样技术,用于空间和时间视频扩展,该技术的性能比以前提出的方法更好。我们介绍了大型文本条件的视频生成任务,以及最新的结果,以实现视频预测和无条件视频生成的确定基准。可从https://video-diffusion.github.io/获得补充材料
translated by 谷歌翻译
扩散模型是一类强大的生成模型类别,可以迭代地贬低样品生成数据。尽管许多作品都集中在此抽样过程中的迭代次数上,但很少有人专注于每次迭代的成本。我们发现,添加简单的VIT风格的修补转换可以大大减少扩散模型的采样时间和内存使用情况。我们通过对扩散模型目标的分析以及在LSUN教堂,Imagenet 256和FFHQ1024上进行的经验实验来证明我们的方法是合理的。我们在Tensorflow和Pytorch中提供了实现。
translated by 谷歌翻译
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion.
translated by 谷歌翻译
denoisis扩散概率模型(DDPM)能够通过引入独立的噪声吸引分类器来在每次deosoing过程的时间步骤中提供条件梯度指导,从而使有条件的图像从先前的噪声到真实数据。但是,由于分类器能够轻松地区分不完全生成的图像仅具有高级结构的能力,因此梯度是一种类信息指导,倾向于尽早消失,导致从条件生成过程中崩溃到无条件过程。为了解决这个问题,我们从两个角度提出了两种简单但有效的方法。对于抽样程序,我们将预测分布的熵作为指导消失水平的度量,并提出一种熵感知的缩放方法,以适应性地恢复条件语义指导。每个生成样品的%。对于训练阶段,我们提出了熵吸引的优化目标,以减轻噪音数据的过度自信预测。在Imagenet1000 256x256中,我们提出的采样方案和训练有素的分类器(预训练的条件和无条件的DDPM模型可以实现10.89%(4.59至4.59至4.09))和43.5%(12至6.78)FID改善。
translated by 谷歌翻译
While recent work on text-conditional 3D object generation has shown promising results, the state-of-the-art methods typically require multiple GPU-hours to produce a single sample. This is in stark contrast to state-of-the-art generative image models, which produce samples in a number of seconds or minutes. In this paper, we explore an alternative method for 3D object generation which produces 3D models in only 1-2 minutes on a single GPU. Our method first generates a single synthetic view using a text-to-image diffusion model, and then produces a 3D point cloud using a second diffusion model which conditions on the generated image. While our method still falls short of the state-of-the-art in terms of sample quality, it is one to two orders of magnitude faster to sample from, offering a practical trade-off for some use cases. We release our pre-trained point cloud diffusion models, as well as evaluation code and models, at https://github.com/openai/point-e.
translated by 谷歌翻译
非自动进取的生成变压器最近表现出令人印象深刻的图像产生性能,并且比自动回归对应物更快。但是,从视觉令牌的真实关节分布中进行的最佳并行采样仍然是一个开放的挑战。在本文中,我们介绍了代币批评,这是一种辅助模型,用于指导非自动性生成变压器的采样。鉴于掩盖和重建的真实图像,对代币批判性模型进行了训练,以区分哪种视觉令牌属于原始图像,哪些是由生成变压器采样的。在非自动回归迭代采样过程中,令牌批评者用于选择要接受的代币以及拒绝和重新取样的代币。再加上最先进的生成变压器令牌 - 批判性可显着提高其性能,并且在挑战性的课堂条件化成像生成中,就产生的图像质量和多样性之间的权衡取舍了最近的扩散模型和gan 。
translated by 谷歌翻译
扩散概率模型采用前向马尔可夫扩散链逐渐将数据映射到噪声分布,学习如何通过推断一个反向马尔可夫扩散链来生成数据以颠倒正向扩散过程。为了实现竞争性数据生成性能,他们需要一条长长的扩散链,这使它们在培训中不仅在培训中而且发电。为了显着提高计算效率,我们建议通过废除将数据扩散到随机噪声的要求来截断正向扩散链。因此,我们从隐式生成分布而不是随机噪声启动逆扩散链,并通过将其与截断的正向扩散链损坏的数据的分布相匹配来学习其参数。实验结果表明,就发电性能和所需的逆扩散步骤的数量而言,我们的截短扩散概率模型对未截断的概率模型提供了一致的改进。
translated by 谷歌翻译
降级扩散概率模型(DDPM)是最近获得最新结果的生成模型系列。为了获得类条件生成,建议通过从时间依赖性分类器中梯度指导扩散过程。尽管这个想法在理论上是合理的,但基于深度学习的分类器臭名昭著地容易受到基于梯度的对抗攻击的影响。因此,尽管传统分类器可能会达到良好的精度分数,但它们的梯度可能不可靠,并可能阻碍了生成结果的改善。最近的工作发现,对抗性稳健的分类器表现出与人类感知一致的梯度,这些梯度可以更好地指导生成过程,以实现语义有意义的图像。我们通过定义和训练时间依赖性的对抗性分类器来利用这一观察结果,并将其用作生成扩散模型的指导。在有关高度挑战性和多样化的Imagenet数据集的实验中,我们的方案引入了更明显的中间梯度,更好地与理论发现的一致性以及在几个评估指标下的改进的生成结果。此外,我们进行了一项意见调查,其发现表明人类评估者更喜欢我们的方法的结果。
translated by 谷歌翻译
扩散概率模型已被证明在几个竞争性图像综合基准上产生最先进的结果,但缺乏低维,可解释的潜在空间,并且在一代中慢慢。另一方面,变形AutoEncoders(VAES)通常可以访问低维潜空间,但表现出差的样品质量。尽管最近的进步,VAE通常需要潜在代码的高维层次结构来产生高质量样本。我们呈现DiffUsevae,一种新的生成框架,它在扩散模型框架内集成了VAE,并利用这一点以设计用于扩散模型的新型条件参数化。我们表明所得模型可以在采样效率方面提高无条件扩散模型,同时还配备了具有低维VAE的扩散模型推断潜码。此外,我们表明所提出的模型可以产生高分辨率样本,并展示与标准基准上的最先进模型相当的合成质量。最后,我们表明所提出的方法可用于可控制的图像合成,并且还展示了图像超分辨率和去噪等下游任务的开箱即用功能。为了重现性,我们的源代码将公开可用于\ url {https://github.com/kpandey008/diffusevae}。
translated by 谷歌翻译
虽然扩散概率模型可以产生高质量的图像内容,但仍然存在高分辨率图像的关键限制及其相关的高计算要求。最近的矢量量化图像模型已经克服了图像分辨率的这种限制,而是通过从之前的元素 - 明智的自回归采样生成令牌时,这是对图像分辨率的速度和单向的。相比之下,在本文中,我们提出了一种新的离散扩散概率模型,其通过使用无约束的变压器架构作为骨干来支持矢量量化令牌的并行预测。在培训期间,令牌以订单不可知的方式随机掩盖,变压器学会预测原始令牌。这种矢量量化令牌预测的并行性反过来促进了在计算费用的一小部分下的全球一致的高分辨率和多样性图像的无条件生成。以这种方式,我们可以产生超过原始训练集样本的图像分辨率,而另外提供每个图像似然估计(从生成的对抗方法的差点)。我们的方法在密度方面实现了最先进的结果(Lsun卧室:1.51; Lsun Churches:1.12; FFHQ:1.20)和覆盖范围(Lsun卧室:0.83; Lsun Churches:0.73; FFHQ:0.80),并执行竞争对手(LSUN卧室:3.64; LSUN教堂:4.07; FFHQ:6.11)在计算和减少训练套件要求方面提供优势。
translated by 谷歌翻译