我们提出了一种新颖的方法,用于计划代理人通过观察和学习与世界的历史互动来构成抽象技能。我们的框架通过在未知的前条件下通过一组动作在马尔可夫州空间模型中运行。我们将技能制定为高级抽象政策,该政策根据当前状态提出行动计划。每个政策通过观察各州的过渡来学习新计划,而代理商与世界互动。这种方法会自动学习新的计划以实现特定的预期效果,但是这种计划的成功通常取决于它们适用的状态。因此,我们制定了对无限多部多臂匪徒问题等计划的评估,在这些计划中,我们在评估现有武器的成功概率和探索新选项的成功概率上平衡了资源的分配。结果是一个计划者,能够在嘈杂的环境下自动学习强大的高级技能。这样的技能隐含地学习了没有明确知识的行动前提。我们表明,这种计划方法在高维状态空间域中在实验上非常有竞争力。
translated by 谷歌翻译
强化学习可以培训有效执行复杂任务的政策。然而,对于长地平线任务,这些方法的性能与地平线脱落,通常需要推理和构成较低级别的技能。等级强化学习旨在通过为行动抽象提供一组低级技能来实现这一点。通过抽象空间状态,层次结构也可以进一步提高这一点。我们对适当的状态抽象应取决于可用的较低级别策略的功能。我们提出了价值函数空间:通过使用与每个较低级别的技能对应的值函数来产生这种表示的简单方法。这些价值函数捕获场景的可取性,从而形成了紧凑型摘要任务相关信息的表示,并强大地忽略了分散的人。迷宫解决和机器人操纵任务的实证评估表明,我们的方法提高了长地平的性能,并且能够比替代的无模型和基于模型的方法能够更好的零拍泛化。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
基于模型的增强学习(RL)是一种通过利用学习的单步动力学模型来计划想象中的动作来学习复杂行为的样本效率方法。但是,计划为长马操作计划的每项行动都是不切实际的,类似于每个肌肉运动的人类计划。相反,人类有效地计划具有高级技能来解决复杂的任务。从这种直觉中,我们提出了一个基于技能的RL框架(SKIMO),该框架能够使用技能动力学模型在技能空间中进行计划,该模型直接预测技能成果,而不是预测中级状态中的所有小细节,逐步。为了准确有效的长期计划,我们共同学习了先前经验的技能动力学模型和技能曲目。然后,我们利用学到的技能动力学模型准确模拟和计划技能空间中的长范围,这可以有效地学习长摩盛,稀疏的奖励任务。导航和操纵域中的实验结果表明,Skimo扩展了基于模型的方法的时间范围,并提高了基于模型的RL和基于技能的RL的样品效率。代码和视频可在\ url {https://clvrai.com/skimo}上找到
translated by 谷歌翻译
长摩根和包括一系列隐性子任务的日常任务仍然在离线机器人控制中构成了重大挑战。尽管许多先前的方法旨在通过模仿和离线增强学习的变体来解决这种设置,但学习的行为通常是狭窄的,并且经常努力实现可配置的长匹配目标。由于这两个范式都具有互补的优势和劣势,因此我们提出了一种新型的层次结构方法,结合了两种方法的优势,以从高维相机观察中学习任务无关的长胜压策略。具体而言,我们结合了一项低级政策,该政策通过模仿学习和从离线强化学习中学到的高级政策学习潜在的技能,以促进潜在的行为先验。各种模拟和真实机器人控制任务的实验表明,我们的配方使以前看不见的技能组合能够通过“缝制”潜在技能通过目标链条,并在绩效上提高绩效的顺序,从而实现潜在的目标。艺术基线。我们甚至还学习了一个多任务视觉运动策略,用于现实世界中25个不同的操纵任务,这既优于模仿学习和离线强化学习技术。
translated by 谷歌翻译
Hierarchical decomposition of control is unavoidable in large dynamical systems. In reinforcement learning (RL), it is usually solved with subgoals defined at higher policy levels and achieved at lower policy levels. Reaching these goals can take a substantial amount of time, during which it is not verified whether they are still worth pursuing. However, due to the randomness of the environment, these goals may become obsolete. In this paper, we address this gap in the state-of-the-art approaches and propose a method in which the validity of higher-level actions (thus lower-level goals) is constantly verified at the higher level. If the actions, i.e. lower level goals, become inadequate, they are replaced by more appropriate ones. This way we combine the advantages of hierarchical RL, which is fast training, and flat RL, which is immediate reactivity. We study our approach experimentally on seven benchmark environments.
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
在这项工作中,我们提出了一种初步调查一种名为DYNA-T的新算法。在钢筋学习(RL)中,规划代理有自己的环境表示作为模型。要发现与环境互动的最佳政策,代理商会收集试验和错误时尚的经验。经验可用于学习更好的模型或直接改进价值函数和政策。通常是分离的,Dyna-Q是一种混合方法,在每次迭代,利用真实体验更新模型以及值函数,同时使用模拟数据从其模型中的应用程序进行行动。然而,规划过程是计算昂贵的并且强烈取决于国家行动空间的维度。我们建议在模拟体验上构建一个上置信树(UCT),并在在线学习过程中搜索要选择的最佳动作。我们证明了我们提出的方法对来自Open AI的三个测试平台环境的一系列初步测试的有效性。与Dyna-Q相比,Dyna-T通过选择更强大的动作选择策略来优于随机环境中的最先进的RL代理。
translated by 谷歌翻译
我们提出了一种新型的参数化技能学习算法,旨在学习可转移的参数化技能并将其合成为新的动作空间,以支持长期任务中的有效学习。我们首先提出了新颖的学习目标 - 以轨迹为中心的多样性和平稳性 - 允许代理商能够重复使用的参数化技能。我们的代理商可以使用这些学习的技能来构建时间扩展的参数化行动马尔可夫决策过程,我们为此提出了一种层次的参与者 - 批判算法,旨在通过学习技能有效地学习高级控制政策。我们从经验上证明,所提出的算法使代理能够解决复杂的长途障碍源环境。
translated by 谷歌翻译
在本文中,我们提出了一种新的马尔可夫决策过程学习分层表示的方法。我们的方法通过将状态空间划分为子集,并定义用于在分区之间执行转换的子任务。我们制定将状态空间作为优化问题分区的问题,该优化问题可以使用梯度下降给出一组采样的轨迹来解决,使我们的方法适用于大状态空间的高维问题。我们经验验证方法,通过表示它可以成功地在导航域中成功学习有用的分层表示。一旦了解到,分层表示可以用于解决给定域中的不同任务,从而概括跨任务的知识。
translated by 谷歌翻译
需要长马计划和持续控制能力的问题对现有的强化学习剂构成了重大挑战。在本文中,我们介绍了一种新型的分层增强学习代理,该学习代理将延时的技能与持续控制的技能与远期模型联系起来,以象征性的分离环境的计划进行计划。我们认为我们的代理商符合符号效应的多样化技能。我们制定了一种客观且相应的算法,该算法通过已知的抽象来通过内在动机来无监督学习各种技能。这些技能是通过符号前向模型共同学习的,该模型捕获了国家抽象中技能执行的影响。训练后,我们可以使用向前模型来利用符号动作的技能来进行长途计划,并随后使用学识渊博的连续行动控制技能执行计划。拟议的算法学习了技能和前瞻性模型,可用于解决复杂的任务,这些任务既需要连续控制和长效计划功能,却具有很高的成功率。它与其他平坦和分层的增强学习基线代理相比,并通过真正的机器人成功证明。
translated by 谷歌翻译
我们提出了Rapid-Learn:学习再次恢复和计划,即一种混合计划和学习方法,以解决适应代理环境中突然和意外变化(即新颖性)的问题。 Rapid-Learn旨在实时制定和求解任务的Markov决策过程(MDPS),并能够利用域知识来学习由环境变化引起的任何新动态。它能够利用域知识来学习行动执行者,这可以进一步用于解决执行智能,从而成功执行了计划。这种新颖信息反映在其更新的域模型中。我们通过在受到Minecraft启发的环境环境中引入各种新颖性来证明其功效,并将我们的算法与文献中的转移学习基线进行比较。我们的方法是(1)即使在存在多个新颖性的情况下,(2)比转移学习RL基准的样本有效,以及(3)与不完整的模型信息相比,与纯净的符号计划方法相反。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
在本文中,我们研究了可以从原始图像中学习低级技能的曲目的问题,这些曲目可以测序以完成长效的视觉运动任务。强化学习(RL)是一种自主获取短疗法技能的有前途的方法。但是,RL算法的重点很大程度上是这些个人技能的成功,而不是学习和扎根大量的技能曲目,这些技能可以对这些技能进行测序,这些技能可以对完成扩展的多阶段任务进行测序。后者需要稳健性和持久性,因为技能的错误会随着时间的流逝而复杂,并且可能要求机器人在其曲目中具有许多原始技能,而不仅仅是一个。为此,我们介绍了Ember,Ember是一种基于模型的RL方法,用于学习原始技能,适合完成长途视觉运动任务。 Ember使用学识渊博的模型,评论家和成功分类器学习和计划,成功分类器既可以作为RL的奖励功能,又是一种基础机制,可连续检测机器人在失败或扰动下是否应重试技能。此外,学到的模型是任务不合时宜的,并使用来自所有技能的数据进行了培训,从而使机器人能够有效地学习许多不同的原语。这些视觉运动原始技能及其相关的前后条件可以直接与现成的符号计划者结合在一起,以完成长途任务。在Franka Emika机器人部门上,我们发现Ember使机器人能够以85%的成功率完成三个长马视觉运动任务,例如组织办公桌,文件柜和抽屉,需要排序多达12个技能,这些技能最多需要12个技能,涉及14个独特的学识渊博,并要求对新物体进行概括。
translated by 谷歌翻译
有效计划的能力对于生物体和人造系统都是至关重要的。在认知神经科学和人工智能(AI)中广泛研究了基于模型的计划和假期,但是从不同的角度来看,以及难以调和的考虑(生物现实主义与可伸缩性)的不同意见(生物现实主义与可伸缩性)。在这里,我们介绍了一种新颖的方法来计划大型POMDP(Active Tree search(ACT)),该方法结合了神经科学中领先的计划理论的规范性特征和生物学现实主义(主动推论)和树木搜索方法的可扩展性AI。这种统一对两种方法都是有益的。一方面,使用树搜索可以使生物学接地的第一原理,主动推断的方法可应用于大规模问题。另一方面,主动推理为探索 - 开发困境提供了一种原则性的解决方案,该解决方案通常在树搜索方法中以启发性解决。我们的模拟表明,ACT成功地浏览了对基于抽样的方法,需要自适应探索的问题以及大型POMDP问题“ RockSample”的二进制树,其中ACT近似于最新的POMDP解决方案。此外,我们说明了如何使用ACT来模拟人类和其他解决大型计划问题的人类和其他动物的神经生理反应(例如,在海马和前额叶皮层)。这些数值分析表明,主动树搜索是神经科学和AI计划理论的原则性实现,既具有生物现实主义和可扩展性。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning. Skills are typically extracted from expert demonstrations and are embedded into a latent space from which they can be sampled as actions by a high-level RL agent. However, this skill space is expansive, and not all skills are relevant for a given robot state, making exploration difficult. Furthermore, the downstream RL agent is limited to learning structurally similar tasks to those used to construct the skill space. We firstly propose accelerating exploration in the skill space using state-conditioned generative models to directly bias the high-level agent towards only sampling skills relevant to a given state based on prior experience. Next, we propose a low-level residual policy for fine-grained skill adaptation enabling downstream RL agents to adapt to unseen task variations. Finally, we validate our approach across four challenging manipulation tasks that differ from those used to build the skill space, demonstrating our ability to learn across task variations while significantly accelerating exploration, outperforming prior works. Code and videos are available on our project website: https://krishanrana.github.io/reskill.
translated by 谷歌翻译
主动推断是建模生物学和人造药物的行为的概率框架,该框架源于最小化自由能的原理。近年来,该框架已成功地应用于各种情况下,其目标是最大程度地提高奖励,提供可比性,有时甚至是卓越的性能与替代方法。在本文中,我们通过演示如何以及何时进行主动推理代理执行最佳奖励的动作来阐明奖励最大化和主动推断之间的联系。确切地说,我们展示了主动推理为Bellman方程提供最佳解决方案的条件 - 这种公式是基于模型的增强学习和控制的几种方法。在部分观察到的马尔可夫决策过程中,标准的主动推理方案可以为计划视野1的最佳动作产生最佳动作,但不能超越。相比之下,最近开发的递归活跃推理方案(复杂的推理)可以在任何有限的颞范围内产生最佳作用。我们通过讨论主动推理和强化学习之间更广泛的关系来补充分析。
translated by 谷歌翻译