固有的图像分解是一个重要且长期存在的计算机视觉问题。给定输入映像,恢复物理场景属性的定位不足。几个出于身体动机的先验已被用来限制固有图像分解的优化问题的解决方案空间。这项工作利用了深度学习的优势,并表明它可以以高效率解决这个具有挑战性的计算机视觉问题。焦点在于特征编码阶段,从输入图像中提取不同固有层的区分特征。为了实现这一目标,我们探讨了高维特征嵌入空间中不同内在组件的独特特性。我们定义特征分布差异,以有效地分离不同内在组件的特征向量。功能分布也受到限制,以通过特征分布一致性符合真实的分布。此外,还提供了一种数据完善方法来消除Sintel数据集中的数据不一致,使其更适合固有图像分解。我们的方法还扩展到基于相邻帧之间像素的对应关系的固有视频分解。实验结果表明,我们提出的网络结构可以胜过现有的最新最新。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译
本文解决了单幅图像下雨的问题,即从一张多雨工件遮挡的单个图像中恢复清洁和无雨背景场景的任务。虽然最近的进步采用现实世界的延期数据来克服对雨水清洁图像的需要,但它们仅限于充分利用时间流逝数据。主要原因是,在网络架构方面,由于缺乏内存组件,它们无法在训练期间在训练期间捕获长期雨条纹信息。为了解决这个问题,我们提出了一种基于内存网络的新颖网络架构,该内存网络明确有助于在时间流逝数据中捕获长期雨条纹信息。我们的网络包括编码器 - 解码器网络和存储器网络。从编码器中提取的功能被读取并更新在包含几个存储器项中以存储雨条目感知功能表示的几个存储器项。利用读/更新操作,存储器网络根据查询检索相关的存储器项,使得存储器项能够表示在时间流逝数据中包括的各种雨条纹。为了提高内存特征的辨别力,我们还通过擦除背景信息,提出了一种用于仅捕获存储网络中的雨条信息的新型背景选择性美白(BSW)损耗。标准基准测试的实验结果证明了我们方法的有效性和优越性。
translated by 谷歌翻译
基于深度学习的低光图像增强方法通常需要巨大的配对训练数据,这对于在现实世界的场景中捕获是不切实际的。最近,已经探索了无监督的方法来消除对成对训练数据的依赖。然而,由于没有前衣,它们在不同的现实情景中表现得不稳定。为了解决这个问题,我们提出了一种基于先前(HEP)的有效预期直方图均衡的无监督的低光图像增强方法。我们的作品受到了有趣的观察,即直方图均衡增强图像的特征图和地面真理是相似的。具体而言,我们制定了HEP,提供了丰富的纹理和亮度信息。嵌入一​​个亮度模块(LUM),它有助于将低光图像分解为照明和反射率图,并且反射率图可以被视为恢复的图像。然而,基于Retinex理论的推导揭示了反射率图被噪声污染。我们介绍了一个噪声解剖学模块(NDM),以解除反射率图中的噪声和内容,具有不配对清洁图像的可靠帮助。通过直方图均衡的先前和噪声解剖,我们的方法可以恢复更精细的细节,更有能力抑制现实世界低光场景中的噪声。广泛的实验表明,我们的方法对最先进的无监督的低光增强算法有利地表现出甚至与最先进的监督算法匹配。
translated by 谷歌翻译
随着增强的焦点和虚拟现实应用(XR)来说,可以对可以将物体从图像和视频升力到适合各种相关3D任务的表示的算法。 XR设备和应用程序的大规模部署意味着我们不能仅仅依赖于监督学习,因为收集和注释现实世界中无限各种物体的数据是不可行的。我们提出了一种弱监督的方法,能够将物体的单个图像分解成形状(深度和正规),材料(反射率,反射率和发光)和全局照明参数。对于培训,该方法仅依赖于训练对象的粗略初始形状估计来引导学习过程。这种形状监督可以例如从预先预制的深度网络或 - 从传统的结构 - 来自运动管道中的普罗维尔或 - 更慷慨地实现。在我们的实验中,我们表明该方法可以将2D图像成功地将2D图像成功渲染为分解的3D表示并推广到未经证明的对象类别。由于缺乏频繁的评估因缺乏地面真理数据而困难,我们还介绍了一种允许定量评估的照片 - 现实的合成测试集。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
在过去的几十年中,盲目的图像质量评估(BIQA)旨在准确地预测图像质量而无需任何原始参考信息,但一直在广泛关注。特别是,在深层神经网络的帮助下,取得了巨大进展。但是,对于夜间图像(NTI)的BIQA的研究仍然较少,通常患有复杂的真实扭曲,例如可见性降低,低对比度,添加噪声和颜色失真。这些多样化的真实降解特别挑战了有效的深神网络的设计,用于盲目NTI质量评估(NTIQE)。在本文中,我们提出了一个新颖的深层分解和双线性池网络(DDB-NET),以更好地解决此问题。 DDB-NET包含三个模块,即图像分解模块,一个特征编码模块和双线性池模块。图像分解模块的灵感来自Itinex理论,并涉及将输入NTI解耦到负责照明信息的照明层组件和负责内容信息的反射层组件。然后,编码模块的功能涉及分别植根于两个解耦组件的降解的特征表示。最后,通过将照明相关和与内容相关的降解作为两因素变化进行建模,将两个特征集组合在一起,将双线汇总在一起以形成统一的表示,以进行质量预测。在几个基准数据集上进行了广泛的实验,已对所提出的DDB-NET的优势得到了很好的验证。源代码将很快提供。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
动态对象对机器人对环境的看法产生了重大影响,这降低了本地化和映射等基本任务的性能。在这项工作中,我们通过在由动态对象封闭的区域中合成合理的颜色,纹理和几何形状来解决这个问题。我们提出了一种新的几何感知Dynafill架构,其遵循粗略拓扑,并将我们所通用的经常性反馈机制结合到自适应地融合来自之前的时间步来的信息。我们使用对抗性培训来优化架构,以综合精细的现实纹理,使其能够以空间和时间相干的方式在线在线遮挡地区的幻觉和深度结构,而不依赖于未来的帧信息。将我们的待遇问题作为图像到图像到图像的翻译任务,我们的模型还纠正了与场景中动态对象的存在相关的区域,例如阴影或反射。我们引入了具有RGB-D图像,语义分段标签,摄像机的大型高估数据集,以及遮挡区域的地面RGB-D信息。广泛的定量和定性评估表明,即使在挑战天气条件下,我们的方法也能实现最先进的性能。此外,我们使用综合图像显示基于检索的视觉本地化的结果,该图像证明了我们方法的效用。
translated by 谷歌翻译
在极低光线条件下捕获图像会对标准相机管道带来重大挑战。图像变得太黑了,太吵了,这使得传统的增强技术几乎不可能申请。最近,基于学习的方法已经为此任务显示了非常有希望的结果,因为它们具有更大的表现力能力来允许提高质量。这些研究中的激励,在本文中,我们的目标是利用爆破摄影来提高性能,并从极端暗的原始图像获得更加锐利和更准确的RGB图像。我们提出的框架的骨干是一种新颖的粗良好网络架构,逐步产生高质量的输出。粗略网络预测了低分辨率,去噪的原始图像,然后将其馈送到精细网络以恢复微尺的细节和逼真的纹理。为了进一步降低噪声水平并提高颜色精度,我们将该网络扩展到置换不变结构,使得它作为输入突发为低光图像,并在特征级别地合并来自多个图像的信息。我们的实验表明,我们的方法通过生产更详细和相当更高的质量的图像来引起比最先进的方法更令人愉悦的结果。
translated by 谷歌翻译
固有图像分解(IID)是一个不受限制的问题。因此,传统方法使用手工制作的先验来限制问题。但是,在应对复杂场景时,这些约束受到限制。基于深度学习的方法通过数据隐含地学习了这些约束,但是它们通常会遭受数据集偏见的困扰(由于无法包括所有可能的成像条件)。在本文中,提出了两者的组合。利用语义和不变特征(例如语义和不变特征)以获得语义和物理上合理的反射率转换。这些过渡用于引导具有隐式同质性约束的进行性CNN,以分解反射率和阴影图。进行了一项消融研究,表明拟议的先验和进行性CNN的使用增加了IID的性能。我们提出的数据集和标准现实世界IIW数据集的最新性能都显示了提出的方法的有效性。代码可在https://github.com/morpheus3000/signet上提供
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
深度估计是3D重建的具有挑战性的任务,以提高环境意识的准确性感测。这项工作带来了一系列改进的新解决方案,与现有方法相比,增加了一系列改进,这增加了对深度图的定量和定性理解。最近,卷积神经网络(CNN)展示了估计单眼图象的深度图的非凡能力。然而,传统的CNN不支持拓扑结构,它们只能在具有确定尺寸和重量的常规图像区域上工作。另一方面,图形卷积网络(GCN)可以处理非欧几里德数据的卷积,并且它可以应用于拓扑结构内的不规则图像区域。因此,在这项工作中为了保护对象几何外观和分布,我们的目的是利用GCN进行自我监督的深度估计模型。我们的模型包括两个并行自动编码器网络:第一个是一个自动编码器,它取决于Reset-50,并从输入图像和多尺度GCN上提取功能以估计深度图。反过来,第二网络将用于基于Reset-18的两个连续帧之间估计自我运动矢量(即3D姿势)。估计的3D姿势和深度图都将用于构建目标图像。使用与光度,投影和平滑度相关的损耗函数的组合用于应对不良深度预测,并保持对象的不连续性。特别是,我们的方法提供了可比性和有前途的结果,在公共基准和Make3D数据集中的高预测精度为89%,与最先进的解决方案相比,培训参数的数量减少了40%。源代码在https://github.com/arminmasoumian/gcndepth.git上公开可用
translated by 谷歌翻译
在接受高质量的地面真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新颖的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,该模型在两个大规模且具有挑战性的数据集上进行了评估:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。
translated by 谷歌翻译
通过探索跨视图一致性,例如,光度计一致性和3D点云的一致性,在自我监督的单眼深度估计(SS-MDE)中取得了显着进步。但是,它们非常容易受到照明差异,遮挡,无纹理区域以及移动对象的影响,使它们不够强大,无法处理各种场景。为了应对这一挑战,我们在本文中研究了两种强大的跨视图一致性。首先,相邻帧之间的空间偏移场是通过通过可变形对齐来从其邻居重建参考框架来获得的,该比对通过深度特征对齐(DFA)损失来对齐时间深度特征。其次,计算每个参考框架及其附近框架的3D点云并转换为体素空间,在其中计算每个体素中的点密度并通过体素密度比对(VDA)损耗对齐。通过这种方式,我们利用了SS-MDE的深度特征空间和3D体素空间的时间连贯性,将“点对点”对齐范式转移到“区域到区域”。与光度一致性损失以及刚性点云对齐损失相比,由于深度特征的强大代表能力以及对上述挑战的素密度的高公差,提出的DFA和VDA损失更加强大。几个户外基准的实验结果表明,我们的方法的表现优于当前最新技术。广泛的消融研究和分析验证了拟议损失的有效性,尤其是在具有挑战性的场景中。代码和型号可在https://github.com/sunnyhelen/rcvc-depth上找到。
translated by 谷歌翻译
鉴于一个人的肖像图像和目标照明的环境图,肖像重新旨在重新刷新图像中的人,就好像该人出现在具有目标照明的环境中一样。为了获得高质量的结果,最近的方法依靠深度学习。一种有效的方法是用高保真输入输出对的高保真数据集监督对深神经网络的培训,并以光阶段捕获。但是,获取此类数据需要昂贵的特殊捕获钻机和耗时的工作,从而限制了对少数机智的实验室的访问。为了解决限制,我们提出了一种新方法,该方法可以与最新的(SOTA)重新确定方法相提并论,而无需光阶段。我们的方法基于这样的意识到,肖像图像的成功重新重新取决于两个条件。首先,该方法需要模仿基于物理的重新考虑的行为。其次,输出必须是逼真的。为了满足第一个条件,我们建议通过通过虚拟光阶段生成的训练数据来训练重新网络,该培训数据在不同的环境图下对各种3D合成人体进行了基于物理的渲染。为了满足第二种条件,我们开发了一种新型的合成对真实方法,以将光真实主义带入重新定向网络输出。除了获得SOTA结果外,我们的方法还提供了与先前方法相比的几个优点,包括可控的眼镜和更暂时的结果以重新欣赏视频。
translated by 谷歌翻译
在低灯条件下捕获的图像遭受低可视性和各种成像伪影,例如真实噪音。现有的监督启示算法需要大量的像素对齐的训练图像对,这很难在实践中准备。虽然弱监督或无人监督的方法可以缓解这些挑战,但不使用配对的训练图像,由于缺乏相应的监督,一些现实世界的文物不可避免地被错误地放大。在本文中,而不是使用完美的对齐图像进行培训,我们创造性地使用未对准的现实世界图像作为指导,这很容易收集。具体地,我们提出了一个交叉图像解剖线程(CIDN),以分别提取来自低/常光图像的交叉图像亮度和图像特定内容特征。基于此,CIDN可以同时校正特征域中的亮度和抑制图像伪像,其在很大程度上将鲁棒性增加到像素偏移。此外,我们收集了一个新的低光图像增强数据集,包括具有现实世界腐败的未对准培训图像。实验结果表明,我们的模型在新建议的数据集和其他流行的低光数据集中实现了最先进的表演。
translated by 谷歌翻译
从单个图像重建高保真3D面部纹理是一个具有挑战性的任务,因为缺乏完整的面部信息和3D面和2D图像之间的域间隙。最新作品通过应用基于代或基于重建的方法来解决面部纹理重建问题。尽管各种方法具有自身的优势,但它们不能恢复高保真和可重新可传送的面部纹理,其中术语“重新可调剂”要求面部质地在空间地完成和与环境照明中脱颖而出。在本文中,我们提出了一种新颖的自我监督学习框架,用于从野外的单视图重建高质量的3D面。我们的主要思想是首先利用先前的一代模块来生产先前的Albedo,然后利用细节细化模块来获得详细的Albedo。为了进一步使面部纹理解开照明,我们提出了一种新颖的详细的照明表示,该表现在一起与详细的Albedo一起重建。我们还在反照侧和照明方面设计了几种正规化损失功能,以便于解散这两个因素。最后,由于可怜的渲染技术,我们的神经网络可以以自我监督的方式有效地培训。关于具有挑战性的数据集的广泛实验表明,我们的框架在定性和定量比较方面显着优于最先进的方法。
translated by 谷歌翻译