我们研究了离线模仿学习(IL)的问题,在该问题中,代理商旨在学习最佳的专家行为政策,而无需其他在线环境互动。取而代之的是,该代理来自次优行为的补充离线数据集。解决此问题的先前工作要么要求专家数据占据离线数据集的大部分比例,要么需要学习奖励功能并在以后执行离线加强学习(RL)。在本文中,我们旨在解决问题,而无需进行奖励学习和离线RL培训的其他步骤,当时示范包含大量次优数据。基于行为克隆(BC),我们引入了一个额外的歧视者,以区分专家和非专家数据。我们提出了一个合作框架,以增强这两个任务的学习,基于此框架,我们设计了一种新的IL算法,其中歧视者的输出是BC损失的权重。实验结果表明,与基线算法相比,我们提出的算法可获得更高的回报和更快的训练速度。
translated by 谷歌翻译
离线模仿学习(IL)是从没有奖励标签的专家演示中解决决策问题的强大方法。由于协变量转移,现有的离线IL方法在有限的专家数据下遭受严重的性能变性。但是,包括学习的动力学模型可以潜在地改善专家数据的状态行动空间覆盖范围,但是,它也面临着诸如模型近似/概括/概括性错误和推出数据的次级优势之类的挑战性问题。在本文中,我们提出了基于歧视者指导的基于模型的离线模仿学习(DMIL)框架,该框架引入了一个歧视者,以同时区分模型推出数据的动力学正确性和次优性与真实专家示范。 DMIL采用了一种新颖的合作对抗学习策略,该策略使用歧视者指导和融合了政策和动态模型的学习过程,从而改善了模型性能和鲁棒性。当演示包含大量次优数据时,我们的框架也可以扩展到案例。实验结果表明,与小型数据集下的最新离线IL方法相比,DMIL及其扩展具有出色的性能和鲁棒性。
translated by 谷歌翻译
我们提出了状态匹配的离线分布校正估计(SMODICE),这是一种新颖且基于多功能回归的离线模仿学习(IL)算法,该算法是通过状态占用匹配得出的。我们表明,SMODICE目标通过在表格MDP中的Fenchel二元性和一个分析解决方案的应用来接受一个简单的优化过程。不需要访问专家的行动,可以将Smodice有效地应用于三个离线IL设置:(i)模仿观察值(IFO),(ii)IFO具有动态或形态上不匹配的专家,以及(iii)基于示例的加固学习,这些学习我们表明可以将其公式为州占领的匹配问题。我们在GridWorld环境以及高维离线基准上广泛评估了Smodice。我们的结果表明,Smodice对于所有三个问题设置都有效,并且在前最新情况下均明显胜过。
translated by 谷歌翻译
在本文中,我们提出了一个健壮的模仿学习(IL)框架,该框架在扰动环境动态时改善了IL的稳健性。在单个环境中训练的现有IL框架可能会因环境动力学的扰动而灾难性地失败,因为它无法捕获可以更改潜在环境动态的情况。我们的框架有效地处理了具有不同动态的环境,通过模仿了采样环境动力学中的多个专家,以增强环境动力学的一般变化中的鲁棒性。为了强力模仿多个样本专家,我们将代理商政策与每个样本专家之间的Jensen-Shannon分歧降低了风险。数值结果表明,与常规IL基准相比,我们的算法显着提高了针对动力学扰动的鲁棒性。
translated by 谷歌翻译
离线强化学习(RL)任务要求代理从预先收集的数据集中学习,没有与环境进行进一步的交互。尽管有可能超越行为政策,但基于RL的方法通常是不切实际的,因为培训不稳定并引导外推错误,这始终需要通过在线评估进行仔细的超参数调整。相比之下,离线模仿学习(IL)没有这样的问题,因为它直接在不估计值函数的情况下直接了解策略。然而,IL通常限制在行为政策的能力,并且倾向于从政策混合收集的数据集中学习平庸行为。在本文中,我们的目标是利用IL但缓解这种缺点。观察行为克隆能够使用较少的数据模仿邻近的策略,我们提出\ Textit {课程脱机仿制学习(线圈)},它利用具有更高回报的自适应邻近策略的体验挑选策略,并提高了当前策略沿课程阶段。在连续控制基准测试中,我们将线圈与基于仿制的和基于RL的方法进行比较,表明它不仅避免了在混合数据集上学习平庸行为,而且甚至与最先进的离线RL方法竞争。
translated by 谷歌翻译
仿制学习(IL)是一个框架,了解从示范中模仿专家行为。最近,IL显示了高维和控制任务的有希望的结果。然而,IL通常遭受环境互动方面的样本低效率,这严重限制了它们对模拟域的应用。在工业应用中,学习者通常具有高的相互作用成本,与环境的互动越多,对环境的损害越多,学习者本身就越多。在本文中,我们努力通过引入逆钢筋学习的新颖方案来提高样本效率。我们的方法,我们调用\ texit {model redion函数基础的模仿学习}(mrfil),使用一个集合动态模型作为奖励功能,是通过专家演示培训的内容。关键的想法是通过在符合专家示范分布时提供积极奖励,为代理商提供与漫长地平线相匹配的演示。此外,我们展示了新客观函数的收敛保证。实验结果表明,与IL方法相比,我们的算法达到了竞争性能,并显着降低了环境交互。
translated by 谷歌翻译
尽管理论上的行为克隆(BC)遭受了复杂错误,但其可扩展性和简单性仍然使其成为一种有吸引力的模仿学习算法。相比之下,对抗性训练的模仿方法通常不会共享相同的问题,但需要与环境进行互动。同时,大多数模仿学习方法仅利用最佳数据集,这可能比其次优的数据集更昂贵。出现的一个问题是,我们可以以原则上的方式使用次优数据集,否则会闲置吗?我们提出了一个基于可扩展模型的离线模仿学习算法框架,该算法框架利用次优和最佳策略收集的数据集,并表明其最坏情况下的次优率在时间范围内相对于专家样本而变线。我们从经验上验证了我们的理论结果,并表明所提出的方法\ textit {始终}在模拟连续控制域的低数据状态下优于BC。
translated by 谷歌翻译
事后重新标记已成为多进球增强学习(RL)的基础技术。这个想法非常简单:任何任意轨迹都可以看作是达到轨迹最终状态的专家演示。直观地,此程序训练了一个目标条件政策,以模仿次优的专家。但是,模仿与事后重新标签之间的这种联系尚不清楚。现代模仿学习算法是用Divergence最小化的语言描述的,但仍然是一个开放的问题。在这项工作中,我们开发了一个统一的目标,以解释这种联系,从中我们可以从中获得目标条件的监督学习(GCSL)和奖励功能,并从第一原则中获得了事后见解体验重播(她)。在实验上,我们发现,尽管目标条件行为克隆(BC)最近取得了进步,但多进球Q学习仍然可以超越BC样方法。此外,两者的香草组合实际上都损害了模型性能。在我们的框架下,我们研究何时期望卑诗省提供帮助,并从经验上验证我们的发现。我们的工作进一步桥接了目标的目标和生成建模,说明了将生成模型成功扩展到RL的细微差别和新途径。
translated by 谷歌翻译
离线增强学习(RL)可以从静态数据集中学习控制策略,但是像标准RL方法一样,它需要每个过渡的奖励注释。在许多情况下,将大型数据集标记为奖励可能会很高,尤其是如果人类标签必须提供这些奖励,同时收集多样的未标记数据可能相对便宜。我们如何在离线RL中最好地利用这种未标记的数据?一种自然解决方案是从标记的数据中学习奖励函数,并使用它标记未标记的数据。在本文中,我们发现,也许令人惊讶的是,一种简单得多的方法,它简单地将零奖励应用于未标记的数据可以导致理论和实践中的有效数据共享,而无需学习任何奖励模型。虽然这种方法起初可能看起来很奇怪(并且不正确),但我们提供了广泛的理论和经验分析,说明了它如何摆脱奖励偏见,样本复杂性和分配变化,通常会导致良好的结果。我们表征了这种简单策略有效的条件,并进一步表明,使用简单的重新加权方法扩展它可以进一步缓解通过使用不正确的奖励标签引入的偏见。我们的经验评估证实了模拟机器人运动,导航和操纵设置中的这些发现。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
Current approaches to multi-agent cooperation rely heavily on centralized mechanisms or explicit communication protocols to ensure convergence. This paper studies the problem of distributed multi-agent learning without resorting to centralized components or explicit communication. It examines the use of distribution matching to facilitate the coordination of independent agents. In the proposed scheme, each agent independently minimizes the distribution mismatch to the corresponding component of a target visitation distribution. The theoretical analysis shows that under certain conditions, each agent minimizing its individual distribution mismatch allows the convergence to the joint policy that generated the target distribution. Further, if the target distribution is from a joint policy that optimizes a cooperative task, the optimal policy for a combination of this task reward and the distribution matching reward is the same joint policy. This insight is used to formulate a practical algorithm (DM$^2$), in which each individual agent matches a target distribution derived from concurrently sampled trajectories from a joint expert policy. Experimental validation on the StarCraft domain shows that combining (1) a task reward, and (2) a distribution matching reward for expert demonstrations for the same task, allows agents to outperform a naive distributed baseline. Additional experiments probe the conditions under which expert demonstrations need to be sampled to obtain the learning benefits.
translated by 谷歌翻译
我们为模仿学习提供了一个新的框架 - 将模仿视为政策和奖励之间的基于两人排名的游戏。在这个游戏中,奖励代理商学会了满足行为之间的成对性能排名,而政策代理人则学会最大程度地提高这种奖励。在模仿学习中,很难获得近乎最佳的专家数据,即使在无限数据的限制下,也不能像偏好一样对轨迹进行总订购。另一方面,仅从偏好中学习就具有挑战性,因为需要大量偏好来推断高维奖励功能,尽管偏好数据通常比专家演示更容易收集。经典的逆增强学习(IRL)的配方从专家演示中学习,但没有提供从离线偏好中纳入学习的机制,反之亦然。我们将提出的排名游戏框架实例化,并具有新颖的排名损失,从而使算法可以同时从专家演示和偏好中学习,从而获得两种方式的优势。我们的实验表明,所提出的方法可实现最新的样本效率,并可以从观察(LFO)设置中学习以前无法解决的任务。
translated by 谷歌翻译
许多现有的模仿学习数据集都是从多个演示者那里收集的,每个示威者在环境的不同部分都有不同的专业知识。然而,标准模仿学习算法通常将所有示威者视为同质的,无论其专业知识如何,都会吸收任何次优示威者的弱点。在这项工作中,我们表明,对演示者专业知识的无监督学习可以导致模仿学习算法的性能一致。我们在示威者的学习政策和专业知识水平上开发并优化了联合模型。这使我们的模型能够从最佳行为中学习,并过滤每个演示者的次优行为。我们的模型学会了一项单一的政策,即使是最好的演示者,也可以用来估计任何州的任何演示者的专业知识。我们说明了我们从机器人和离散环境(例如Minigrid和国际象棋)的真实性持续控制任务的发现,以21美元的价格出售$ 23 $设置,平均价格为$ 7 \%\%,最高$ 60 \%\% $根据最终奖励的改进。
translated by 谷歌翻译
Behavioural cloning (BC) is a commonly used imitation learning method to infer a sequential decision-making policy from expert demonstrations. However, when the quality of the data is not optimal, the resulting behavioural policy also performs sub-optimally once deployed. Recently, there has been a surge in offline reinforcement learning methods that hold the promise to extract high-quality policies from sub-optimal historical data. A common approach is to perform regularisation during training, encouraging updates during policy evaluation and/or policy improvement to stay close to the underlying data. In this work, we investigate whether an offline approach to improving the quality of the existing data can lead to improved behavioural policies without any changes in the BC algorithm. The proposed data improvement approach - Trajectory Stitching (TS) - generates new trajectories (sequences of states and actions) by `stitching' pairs of states that were disconnected in the original data and generating their connecting new action. By construction, these new transitions are guaranteed to be highly plausible according to probabilistic models of the environment, and to improve a state-value function. We demonstrate that the iterative process of replacing old trajectories with new ones incrementally improves the underlying behavioural policy. Extensive experimental results show that significant performance gains can be achieved using TS over BC policies extracted from the original data. Furthermore, using the D4RL benchmarking suite, we demonstrate that state-of-the-art results are obtained by combining TS with two existing offline learning methodologies reliant on BC, model-based offline planning (MBOP) and policy constraint (TD3+BC).
translated by 谷歌翻译
需要大量人类努力和迭代的奖励功能规范仍然是通过深入的强化学习来学习行为的主要障碍。相比之下,提供所需行为的视觉演示通常会提供一种更简单,更自然的教师的方式。我们考虑为代理提供了一个固定的视觉演示数据集,说明了如何执行任务,并且必须学习使用提供的演示和无监督的环境交互来解决任务。此设置提出了许多挑战,包括对视觉观察的表示,由于缺乏固定的奖励或学习信号而导致的,由于高维空间而引起的样本复杂性以及学习不稳定。为了解决这些挑战,我们开发了一种基于变异模型的对抗模仿学习(V-Mail)算法。基于模型的方法为表示学习,实现样本效率并通过实现派利学习来提高对抗性训练的稳定性提供了强烈的信号。通过涉及几种基于视觉的运动和操纵任务的实验,我们发现V-Mail以样本有效的方式学习了成功的视觉运动策略,与先前的工作相比,稳定性更高,并且还可以实现较高的渐近性能。我们进一步发现,通过传输学习模型,V-Mail可以从视觉演示中学习新任务,而无需任何其他环境交互。所有结果在内的所有结果都可以在\ url {https://sites.google.com/view/variational-mail}在线找到。
translated by 谷歌翻译
在没有高保真模拟环境的情况下,学习有效的加强学习(RL)政策可以解决现实世界中的复杂任务。在大多数情况下,我们只有具有简化动力学的不完善的模拟器,这不可避免地导致RL策略学习中的SIM到巨大差距。最近出现的离线RL领域为直接从预先收集的历史数据中学习政策提供了另一种可能性。但是,为了达到合理的性能,现有的离线RL算法需要不切实际的离线数据,并具有足够的州行动空间覆盖范围进行培训。这提出了一个新问题:是否有可能通过在线RL中的不完美模拟器中的离线RL中的有限数据中的学习结合到无限制的探索,以解决两种方法的缺点?在这项研究中,我们提出了动态感知的混合离线和对线增强学习(H2O)框架,以为这个问题提供肯定的答案。 H2O引入了动态感知的政策评估方案,该方案可以自适应地惩罚Q函数在模拟的状态行动对上具有较大的动态差距,同时也允许从固定的现实世界数据集中学习。通过广泛的模拟和现实世界任务以及理论分析,我们证明了H2O与其他跨域在线和离线RL算法相对于其他跨域的表现。 H2O提供了全新的脱机脱机RL范式,该范式可能会阐明未来的RL算法设计,以解决实用的现实世界任务。
translated by 谷歌翻译
样本效率对于仿制学习方法来说至关重要,以适用于现实世界应用。许多研究通过延长对抗性模仿的违法行为来提高样本效率,无论这些违规延迟是否可以改变原始目标或涉及复杂的优化。我们重新审视对抗性模仿的基础,并提出了一种不需要对抗性培训或最小最大优化的脱营式样本有效方法。我们的配方在两个主要见解中大写:(1)Bellman方程和静止状态 - 动作分配方程之间的相似性使我们能够推导出一种新的时间差异(TD)学习方法; (2)使用确定性政策简化了TD学习。结合,这些见解产生了一种实用的算法,确定性和鉴别的模仿(D2仿真),其通过第一分区样本来分为两个重放缓冲区,然后通过禁止策略加强学习学习确定性政策。我们的经验结果表明,D2模仿在实现良好的样本效率方面有效,表现出对许多控制任务的对抗模仿的几种违规延伸方法。
translated by 谷歌翻译
离线增强学习(RL)将经典RL算法的范式扩展到纯粹从静态数据集中学习,而无需在学习过程中与基础环境进行交互。离线RL的一个关键挑战是政策培训的不稳定,这是由于离线数据的分布与学习政策的未结束的固定状态分配之间的不匹配引起的。为了避免分配不匹配的有害影响,我们将当前政策的未静置固定分配正规化在政策优化过程中的离线数据。此外,我们训练动力学模型既实施此正规化,又可以更好地估计当前策略的固定分布,从而减少了分布不匹配引起的错误。在各种连续控制的离线RL数据集中,我们的方法表示竞争性能,从而验证了我们的算法。该代码公开可用。
translated by 谷歌翻译
仅国家模仿学习的最新进展将模仿学习的适用性扩展到现实世界中的范围,从而减轻了观察专家行动的需求。但是,现有的解决方案只学会从数据中提取州对行动映射策略,而无需考虑专家如何计划到目标。这阻碍了利用示威游行并限制政策的灵活性的能力。在本文中,我们介绍了解耦政策优化(DEPO),该策略优化(DEPO)明确将策略脱离为高级状态计划者和逆动力学模型。借助嵌入式的脱钩策略梯度和生成对抗训练,DEPO可以将知识转移到不同的动作空间或状态过渡动态,并可以将规划师推广到无示威的状态区域。我们的深入实验分析表明,DEPO在学习最佳模仿性能的同时学习通用目标状态计划者的有效性。我们证明了DEPO通过预训练跨任务转移的吸引力,以及与各种技能共同培训的潜力。
translated by 谷歌翻译
最近,目睹了利用专家国家在模仿学习(IL)中的各种成功应用。然而,来自视觉输入(ILFVI)的另一个IL设定 - IL,它通过利用在线视觉资源而具有更大的承诺,它具有低数据效率和良好的性能,从政策学习方式和高度产生了差 - 宣称视觉输入。我们提出了由禁止策略学习方式,数据增强和编码器技术组成的OPIFVI(视觉输入的偏离策略模仿),分别分别解决所提到的挑战。更具体地,为了提高数据效率,OPIFVI以脱策方式进行IL,可以多次使用采样数据。此外,我们提高了opifvi与光谱归一化的稳定性,以减轻脱助政策培训的副作用。我们认为代理商的ILFVI表现不佳的核心因素可能不会从视觉输入中提取有意义的功能。因此,Opifvi采用计算机愿望的数据增强,以帮助列车编码器,可以更好地从视觉输入中提取功能。另外,对编码器的梯度背交量的特定结构旨在稳定编码器训练。最后,我们证明OPIFVI能够实现专家级性能和优于现有的基线,无论是通过使用Deepmind控制套件的广泛实验,无论视觉演示还是视觉观测。
translated by 谷歌翻译