The human visual system has the remarkably ability to be able to effortlessly learn novel concepts from only a few examples. Mimicking the same behavior on machine learning vision systems is an interesting and very challenging research problem with many practical advantages on real world vision applications. In this context, the goal of our work is to devise a few-shot visual learning system that during test time it will be able to efficiently learn novel categories from only a few training data while at the same time it will not forget the initial categories on which it was trained (here called base categories). To achieve that goal we propose (a) to extend an object recognition system with an attention based few-shot classification weight generator, and (b) to redesign the classifier of a ConvNet model as the cosine similarity function between feature representations and classification weight vectors. The latter, apart from unifying the recognition of both novel and base categories, it also leads to feature representations that generalize better on "unseen" categories. We extensively evaluate our approach on Mini-ImageNet where we manage to improve the prior state-of-the-art on few-shot recognition (i.e., we achieve 56.20% and 73.00% on the 1-shot and 5-shot settings respectively) while at the same time we do not sacrifice any accuracy on the base categories, which is a characteristic that most prior approaches lack. Finally, we apply our approach on the recently introduced few-shot benchmark of Bharath and Girshick [4] where we also achieve stateof-the-art results. The code and models of our paper will be published on: https://github.com/gidariss/ FewShotWithoutForgetting.
translated by 谷歌翻译
Representation learningLow-shot learning Feature extractor Base classes (many training examples)Classifier (base and novel categories) Novel classes (few training examples)Figure 1: Our low-shot learning benchmark in two phases: representation learning and low-shot learning. Modern recognition models use large labeled datasets like ImageNet to build good visual representations and train strong classifiers (representation learning).However, these datasets only contain a fixed set of classes. In many realistic scenarios, once deployed, the model might encounter novel classes that it also needs to recognize, but with very few training examples available (low-shot learning). We present two ways of significantly improving performance in this scenario: (1) a novel loss function for representation learning that leads to better visual representations that generalize well, and (2) a method for hallucinating additional examples for the data-starved novel classes.
translated by 谷歌翻译
Humans can quickly learn new visual concepts, perhaps because they can easily visualize or imagine what novel objects look like from different views. Incorporating this ability to hallucinate novel instances of new concepts might help machine vision systems perform better low-shot learning, i.e., learning concepts from few examples. We present a novel approach to low-shot learning that uses this idea. Our approach builds on recent progress in meta-learning ("learning to learn") by combining a meta-learner with a "hallucinator" that produces additional training examples, and optimizing both models jointly. Our hallucinator can be incorporated into a variety of meta-learners and provides significant gains: up to a 6 point boost in classification accuracy when only a single training example is available, yielding state-of-the-art performance on the challenging ImageNet low-shot classification benchmark.
translated by 谷歌翻译
教学机器根据少数训练样本认识到一个新的类别,特别是由于缺乏数据缺乏的新型类别的难题了解,只有一个仍然挑战。然而,人类可以快速学习新课程,甚至在人类可以讲述基于视觉和语义先前知识的关于每个类别的歧视特征时,甚至给出了一些样本。为了更好地利用这些先验知识,我们提出了语义引导的注意力(SEGA)机制,其中语义知识用于以自上而下的方式引导视觉感知,在区分类别时应注意哪些视觉特征。结果,即使少量样品也可以更具判别嵌入新类。具体地,借助从基类传输可视化的先验知识,接受了一个特征提取器,以培训以将每个小组类的数量的每个小组的图像嵌入到视觉原型中。然后,我们学习一个网络将语义知识映射到特定于类别的注意力矢量,该向量将用于执行功能选择以增强视觉原型。在Miniimagenet,Tieredimagenet,CiFar-FS和Cub上进行了广泛的实验表明,我们的语义引导的注意力实现了预期的功能和优于最先进的结果。
translated by 谷歌翻译
Few-shot learning has become essential for producing models that generalize from few examples. In this work, we identify that metric scaling and metric task conditioning are important to improve the performance of few-shot algorithms. Our analysis reveals that simple metric scaling completely changes the nature of few-shot algorithm parameter updates. Metric scaling provides improvements up to 14% in accuracy for certain metrics on the mini-Imagenet 5-way 5-shot classification task. We further propose a simple and effective way of conditioning a learner on the task sample set, resulting in learning a task-dependent metric space. Moreover, we propose and empirically test a practical end-to-end optimization procedure based on auxiliary task co-training to learn a task-dependent metric space. The resulting few-shot learning model based on the task-dependent scaled metric achieves state of the art on mini-Imagenet. We confirm these results on another few-shot dataset that we introduce in this paper based on CIFAR100. Our code is publicly available at https://github.com/ElementAI/TADAM.
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
我们研究了很少的开放式识别(FSOR)的问题,该问题学习了一个能够快速适应新类的识别系统,具有有限的标签示例和对未知负样本的拒绝。由于数据限制,传统的大规模开放式方法对FSOR问题有效无效。当前的FSOR方法通常校准了几个弹出封闭式分类器对负样品敏感的,因此可以通过阈值拒绝它们。但是,阈值调整是一个具有挑战性的过程,因为不同的FSOR任务可能需要不同的拒绝功能。在本文中,我们提出了任务自适应的负面类别设想,以使FSOR集成阈值调整到学习过程中。具体而言,我们增加了几个封闭式分类器,并使用少量示例产生的其他负面原型。通过在负生成过程中纳入很少的类相关性,我们可以学习FSOR任务的动态拒绝边界。此外,我们将我们的方法扩展到概括的少数开放式识别(GFSOR),该识别需要在许多射击和少数类别上进行分类以及拒绝​​负样本。公共基准的广泛实验验证了我们在这两个问题上的方法。
translated by 谷歌翻译
Few-shot image classification consists of two consecutive learning processes: 1) In the meta-learning stage, the model acquires a knowledge base from a set of training classes. 2) During meta-testing, the acquired knowledge is used to recognize unseen classes from very few examples. Inspired by the compositional representation of objects in humans, we train a neural network architecture that explicitly represents objects as a dictionary of shared components and their spatial composition. In particular, during meta-learning, we train a knowledge base that consists of a dictionary of component representations and a dictionary of component activation maps that encode common spatial activation patterns of components. The elements of both dictionaries are shared among the training classes. During meta-testing, the representation of unseen classes is learned using the component representations and the component activation maps from the knowledge base. Finally, an attention mechanism is used to strengthen those components that are most important for each category. We demonstrate the value of our interpretable compositional learning framework for a few-shot classification using miniImageNet, tieredImageNet, CIFAR-FS, and FC100, where we achieve comparable performance.
translated by 谷歌翻译
Few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples. While significant progress has been made, the growing complexity of network designs, meta-learning algorithms, and differences in implementation details make a fair comparison difficult. In this paper, we present 1) a consistent comparative analysis of several representative few-shot classification algorithms, with results showing that deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences, 2) a modified baseline method that surprisingly achieves competitive performance when compared with the state-of-the-art on both the mini-ImageNet and the CUB datasets, and 3) a new experimental setting for evaluating the cross-domain generalization ability for few-shot classification algorithms. Our results reveal that reducing intra-class variation is an important factor when the feature backbone is shallow, but not as critical when using deeper backbones. In a realistic cross-domain evaluation setting, we show that a baseline method with a standard fine-tuning practice compares favorably against other state-of-the-art few-shot learning algorithms.
translated by 谷歌翻译
Human vision is able to immediately recognize novel visual categories after seeing just one or a few training examples. We describe how to add a similar capability to ConvNet classifiers by directly setting the final layer weights from novel training examples during low-shot learning. We call this process weight imprinting as it directly sets weights for a new category based on an appropriately scaled copy of the embedding layer activations for that training example. The imprinting process provides a valuable complement to training with stochastic gradient descent, as it provides immediate good classification performance and an initialization for any further fine-tuning in the future. We show how this imprinting process is related to proxy-based embeddings. However, it differs in that only a single imprinted weight vector is learned for each novel category, rather than relying on a nearest-neighbor distance to training instances as typically used with embedding methods. Our experiments show that using averaging of imprinted weights provides better generalization than using nearest-neighbor instance embeddings.
translated by 谷歌翻译
很少有射击学习(FSL)由于其在模型训练中的能力而无需过多的数据而引起了计算机视觉的越来越多的关注。 FSL具有挑战性,因为培训和测试类别(基础与新颖集)可能会在很大程度上多样化。传统的基于转移的解决方案旨在将从大型培训集中学到的知识转移到目标测试集中是有限的,因为任务分配转移的关键不利影响没有充分解决。在本文中,我们通过结合度量学习和通道注意的概念扩展了基于转移方法的解决方案。为了更好地利用特征主链提取的特征表示,我们提出了特定于类的通道注意(CSCA)模块,该模块通过分配每个类别的CSCA权重向量来学会突出显示每个类中的判别通道。与旨在学习全球班级功能的一般注意力模块不同,CSCA模块旨在通过非常有效的计算来学习本地和特定的特定功能。我们评估了CSCA模块在标准基准测试中的性能,包括Miniimagenet,Cifar-imagenet,Cifar-FS和Cub-200-200-2011。实验在电感和/跨域设置中进行。我们取得了新的最新结果。
translated by 谷歌翻译
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or selfsupervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of selfdistillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
translated by 谷歌翻译
We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is designed to simulate the few-shot setting. Once trained, a RN is able to classify images of new classes by computing relation scores between query images and the few examples of each new class without further updating the network. Besides providing improved performance on few-shot learning, our framework is easily extended to zero-shot learning. Extensive experiments on five benchmarks demonstrate that our simple approach provides a unified and effective approach for both of these two tasks.
translated by 谷歌翻译
从有限的数据学习是一个具有挑战性的任务,因为数据的稀缺导致训练型模型的较差。经典的全局汇总表示可能会失去有用的本地信息。最近,许多射击学习方法通​​过使用深度描述符和学习像素级度量来解决这一挑战。但是,使用深描述符作为特征表示可能丢失图像的上下文信息。这些方法中的大多数方法独立地处理支持集中的每个类,这不能充分利用鉴别性信息和特定于特定的嵌入。在本文中,我们提出了一种名为稀疏空间变压器(SSFormers)的新型变压器的神经网络架构,可以找到任务相关的功能并抑制任务无关的功能。具体地,我们首先将每个输入图像划分为不同大小的几个图像斑块,以获得密集的局部特征。这些功能在表达本地信息时保留上下文信息。然后,提出了一种稀疏的空间变压器层以在查询图像和整个支持集之间找到空间对应关系,以选择任务相关的图像斑块并抑制任务 - 无关的图像斑块。最后,我们建议使用图像补丁匹配模块来计算密集的本地表示之间的距离,从而确定查询图像属于支持集中的哪个类别。广泛的少量学习基准测试表明,我们的方法实现了最先进的性能。
translated by 谷歌翻译
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
translated by 谷歌翻译
Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use these predictors as base learners to learn representations for few-shot learning and show they offer better tradeoffs between feature size and performance across a range of few-shot recognition benchmarks. Our objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories. To efficiently solve the objective, we exploit two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem. This allows us to use highdimensional embeddings with improved generalization at a modest increase in computational overhead. Our approach, named MetaOptNet, achieves state-of-the-art performance on miniImageNet, tieredImageNet, CIFAR-FS, and FC100 few-shot learning benchmarks. Our code is available online 1 .
translated by 谷歌翻译
基于度量学习的最近方法取得了很大镜头学习的巨大进步。然而,大多数人都仅限于图像级表示方式,这不能正确地处理课外变化和空间知识,从而产生不希望的性能。在本文中,我们提出了一个深度偏置纠正网络(DBRN)来充分利用特征表示结构中存在的空间信息。我们首先采用偏置整流模块来缓解由类内变化引起的不利影响。偏置纠正模块能够专注于通过给定不同权重的对分类更具判别的特征。为了充分利用培训数据,我们设计了一种模拟增强机制,可以使从支架组产生的原型更具代表性。为了验证我们方法的有效性,我们对各种流行的几次分类基准进行了广泛的实验,我们的方法可以优于最先进的方法。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
多标签少量拍摄图像分类(ML-FSIC)是基于少量训练示例将描述性标签分配给以前的未经看台图像的任务。多标签设置的关键特征是图像通常具有多个标签,该标签通常是指图像的不同区域。当估计原型的基于度量的设置时,重要的是确定哪些区域与哪个标签相关,但训练数据有限使得这一极具挑战性。作为一个解决方案,在本文中,我们建议使用Word Embeddings作为关于标签含义的先前知识的形式。特别地,使用依赖于标签嵌入的关注机制来聚合支持图像的本地特征映射来获得视觉原型。作为一个重要的优势,我们的模型可以在不需要微调任何模型参数的情况下推断出不必要的标签的原型,这证明了其强大的概括能力。 Coco和Pascal VOC的实验还表明,我们的模型大大提高了当前最先进的。
translated by 谷歌翻译
The process of learning good features for machine learning applications can be very computationally expensive and may prove difficult in cases where little data is available. A prototypical example of this is the one-shot learning setting, in which we must correctly make predictions given only a single example of each new class.In this paper, we explore a method for learning siamese neural networks which employ a unique structure to naturally rank similarity between inputs. Once a network has been tuned, we can then capitalize on powerful discriminative features to generalize the predictive power of the network not just to new data, but to entirely new classes from unknown distributions. Using a convolutional architecture, we are able to achieve strong results which exceed those of other deep learning models with near stateof-the-art performance on one-shot classification tasks.
translated by 谷歌翻译