例如,具有内置处理器的智能边缘设备在功能和物理形式方面,以执行高级计算机视觉(CV)任务,例如图像分类和对象检测。随着自主汽车和无人机,嵌入式系统和移动设备领域的不断进展,对具有受约束计算资源的这些智能边缘设备的实时推断,对极其有效的人工神经网络(ANN)进行了不断增长的需求。在远程区域中具有不可靠的网络连接和数据传输的添加复杂性,最重要的是在本地捕获和处理数据,而不是将数据发送到云服务器以进行远程处理。另一方面,边缘设备由于其廉价的硬件而提供有限的处理能力,以及有限的冷却和计算资源。在本文中,我们提出了一种名为Effcnet的新型深度卷积神经网络架构,其是利用自查询数据增强和深度可分离的卷积策略来改善实时的边缘设备的改进和高效版本的CondenSenet卷积神经网络(CNN),以改善实时推理性能以及减少EffcNet CNN的最终培训的模型大小,可培训参数和浮点操作(拖翼)。此外,广泛的监督图像分类分析在两个基准数据集中进行:CIFAR-10和CIFAR-100,以验证我们提出的CNN的实时推理性能。最后,我们将这些训练有素的重量部署在NXP BlueBox上,这是一个专为自驾驶车辆和无人机设计的智能边缘开发平台,并且结论将是相应的推断。
translated by 谷歌翻译
由于现代嵌入式系统和具有受约束资源的移动设备的出现,对机器学习目的的令人难以置信的深度神经网络有很大的需求。当他们的数据处理并存储在外部服务器中,在进一步推动了对本地嵌入式系统的实时推断的需要开发这种有效的神经网络的需要时,对一般公众的隐私和保密性越来越关注。本文呈现的工作范围仅限于使用卷积神经网络的图像分类。卷积神经网络(CNN)是一类深神经网络(DNN)广泛用于通过图像传感器捕获的视觉图像的分析,旨在提取信息并将其转换为有意义的表示,以便输入数据的实时推断。在本文中,我们提出了一种深度卷积神经网络架构的近期变体来改善现有CNN架构对嵌入式系统的实时推断的性能。我们表明,与基线神经网络架构,CondenSenet,通过减少培训网络所需的培训参数和拖鞋,在维护培训的模型尺寸低于3.0 MB之间的平衡和准确性之间的平衡折衷导致前所未有的计算效率。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
使用卷积神经网络(CNN)已经显着改善了几种图像处理任务,例如图像分类和对象检测。与Reset和Abseralnet一样,许多架构在创建时至少在一个数据集中实现了出色的结果。培训的一个关键因素涉及网络的正规化,这可以防止结构过度装备。这项工作分析了在过去几年中开发的几种正规化方法,显示了不同CNN模型的显着改进。该作品分为三个主要区域:第一个称为“数据增强”,其中所有技术都侧重于执行输入数据的更改。第二个,命名为“内部更改”,旨在描述修改神经网络或内核生成的特征映射的过程。最后一个称为“标签”,涉及转换给定输入的标签。这项工作提出了与关于正则化的其他可用调查相比的两个主要差异:(i)第一个涉及在稿件中收集的论文并非超过五年,并第二个区别是关于可重复性,即所有作品此处推荐在公共存储库中可用的代码,或者它们已直接在某些框架中实现,例如Tensorflow或Torch。
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译
水下结构的维修和维护以及海洋科学在很大程度上依赖于水下对象检测的结果,这是图像处理工作流程的关键部分。尽管已经提出了许多基于计算机视觉的方法,但还没有人开发出一种可靠,准确地检测并对深海中发现的物体和动物进行分类的系统。这主要是由于障碍物在水下环境中散射和吸收光线。随着深度学习的引入,科学家们已经能够解决广泛的问题,包括保护海洋生态系统,在紧急情况下挽救生命,防止水下灾难,并发现,汤匙和识别水下目标。但是,这些深度学习系统的好处和缺点仍然未知。因此,本文的目的是提供在水下对象检测中使用的数据集的概述,并介绍为此目的所采用的算法的优势和缺点的讨论。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
在物联网(IoT)支持的网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新连接,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层表现出的复杂性的不同基本性质,并遵循训练放回训练的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算高效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了修剪的三种模式,即参数感知(PA),拖网(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
translated by 谷歌翻译
深度卷积神经网络(DCNN)辅助高动态范围(HDR)成像最近接受了很多关注。 DCNN生成的HDR图像的质量过于传统的对应物。然而,DCNN容易被计算密集和富力耗电。为了解决挑战,我们提出了用于极端双曝光图像融合的轻质CNN的基于轻型CNN的算法,这可以在具有有限的电力和硬件资源的各种嵌入式计算平台上实现。使用两个子网络:GlobalNet(g)和detailnet(d)。 G的目标是学习关于空间维度的全局信息,而D旨在增强通道维度的本地细节。 G和D都仅基于深度卷积(D CONC)和何时卷积(P CONV),以减少所需的参数和计算。实验结果显示所提出的技术可以在极其暴露的区域中产生具有合理细节的HDR图像。我们的模型超过了其他最先进的方法0.7至8.5,至于PSNR得分,并与其他方式达到7,675至463,385参数减少
translated by 谷歌翻译
建立一个小型的快速监控系统模型,适合有限的资源设备是一个具有挑战性的,但却是一个重要的任务。卷积神经网络(CNNS)在检测和分类任务中取代了传统的特征提取和机器学习模型。提出了各种复杂的大型CNN模型,从而实现了精度的显着改善。最近介绍了轻量级CNN型号用于实时任务。本文介绍了一种基于CNN的轻量级模型,可以适合诸如覆盆子PI的有限边缘装置。我们所提出的模型提供了具有更好的性能时间,较小的尺寸和与现有方法的可比准确度。在多个基准数据集中评估模型性能。它也与现有模型相比,在大小,平均处理时间和F分数方面。建议未来研究的其他增强功能。
translated by 谷歌翻译
本文介绍了有关如何架构,设计和优化深神经网络(DNN)的最新概述,以提高性能并保留准确性。该论文涵盖了一组跨越整个机器学习处理管道的优化。我们介绍两种类型的优化。第一个改变了DNN模型,需要重新训练,而第二个则不训练。我们专注于GPU优化,但我们认为提供的技术可以与其他AI推理平台一起使用。为了展示DNN模型优化,我们在流行的Edge AI推理平台(Nvidia Jetson Agx Xavier)上改善了光流的最先进的深层网络体系结构之一,RAFT ARXIV:2003.12039。
translated by 谷歌翻译
在视频中,人类的行为是三维(3D)信号。这些视频研究了人类行为的时空知识。使用3D卷积神经网络(CNN)研究了有希望的能力。 3D CNN尚未在静止照片中为其建立良好的二维(2D)等效物获得高输出。董事会3D卷积记忆和时空融合面部训练难以防止3D CNN完成非凡的评估。在本文中,我们实施了混合深度学习体系结构,该体系结构结合了Stip和3D CNN功能,以有效地增强3D视频的性能。实施后,在每个时空融合圈中进行训练的较详细和更深的图表。训练模型在处理模型的复杂评估后进一步增强了结果。视频分类模型在此实现模型中使用。引入了使用深度学习的多媒体数据分类的智能3D网络协议,以进一步了解人类努力中的时空关联。在实施结果时,著名的数据集(即UCF101)评估了提出的混合技术的性能。结果击败了提出的混合技术,该混合动力技术基本上超过了最初的3D CNN。将结果与文献的最新框架进行比较,以识别UCF101的行动识别,准确度为95%。
translated by 谷歌翻译