Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can be mainly attributed to their generalization and robustness properties. Nevertheless, their generalization is based only on the trajectory endpoints (initial and target position). Moreover, the spatial generalization of DMP is known to suffer from shortcomings like over-scaling and mirroring of the motion. In this work we propose a novel generalization scheme, based on optimizing online the DMP weights so that the acceleration profile and hence the underlying training trajectory pattern is preserved. This approach remedies the shortcomings of the classical DMP scaling and additionally allows the DMP to generalize also to intermediate points (via-points) and external signals (coupling terms), while preserving the training trajectory pattern. Extensive comparative simulations with the classical and other DMP variants are conducted, while experimental results validate the applicability and efficacy of the proposed method.
translated by 谷歌翻译
The increasing interest in autonomous robots with a high number of degrees of freedom for industrial applications and service robotics demands control algorithms to handle multiple tasks as well as hard constraints efficiently. This paper presents a general framework in which both kinematic (velocity- or acceleration-based) and dynamic (torque-based) control of redundant robots are handled in a unified fashion. The framework allows for the specification of redundancy resolution problems featuring a hierarchy of arbitrary (equality and inequality) constraints, arbitrary weighting of the control effort in the cost function and an additional input used to optimize possibly remaining redundancy. To solve such problems, a generalization of the Saturation in the Null Space (SNS) algorithm is introduced, which extends the original method according to the features required by our general control framework. Variants of the developed algorithm are presented, which ensure both efficient computation and optimality of the solution. Experiments on a KUKA LBRiiwa robotic arm, as well as simulations with a highly redundant mobile manipulator are reported.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
动态运动原语(DMP)为编码,生成和调整复杂的最终效应轨迹提供了极大的多功能性。 DMP也非常适合从人类演示中学习操纵技巧。但是,DMP的反应性质限制了其用于工具使用和对象操纵任务的适用性,这些任务涉及非全面约束,例如切割手术刀切割或导管转向。在这项工作中,我们通过添加一个耦合项来扩展笛卡尔空间DMP公式,该耦合术语强制执行一组预定义的非独立约束。我们使用udwadia-kalaba方法获得约束强迫项的闭合形式表达式。这种方法提供了一种干净,实用的解决方案,以确保运行时的限制满意度。此外,约束强迫项的提议的分析形式可实现有效的轨迹优化,但受约束。我们通过展示如何从人类示范中学习机器人切割技能来证明这种方法的有用性。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
将机器人放置在受控条件外,需要多功能的运动表示,使机器人能够学习新任务并使其适应环境变化。在工作区中引入障碍或额外机器人的位置,由于故障或运动范围限制导致的关节范围的修改是典型的案例,适应能力在安全地执行机器人任务的关键作用。已经提出了代表适应性运动技能的概率动态(PROMP),其被建模为轨迹的高斯分布。这些都是在分析讲道的,可以从少数演示中学习。然而,原始PROMP制定和随后的方法都仅为特定运动适应问题提供解决方案,例如障碍避免,以及普遍的,统一的适应概率方法缺失。在本文中,我们开发了一种用于调整PROMP的通用概率框架。我们统一以前的适应技术,例如,各种类型的避避,通过一个框架,互相避免,在一个框架中,并将它们结合起来解决复杂的机器人问题。另外,我们推导了新颖的适应技术,例如时间上未结合的通量和互相避免。我们制定适应作为约束优化问题,在那里我们最小化适应的分布与原始原始的分布之间的kullback-leibler发散,而我们限制了与不希望的轨迹相关的概率质量为低电平。我们展示了我们在双机器人手臂设置中的模拟平面机器人武器和7-DOF法兰卡 - Emika机器人的若干适应问题的方法。
translated by 谷歌翻译
身体机器人的合作需要严格的安全保证,因为机器人和人类在共享工作区中工作。这封信提出了一个新颖的控制框架,以处理针对人类机器人互动的基于安全至关重要的位置的约束。所提出的方法基于入学控制,指数控制屏障功能(ECBF)和二次计划(QP),以在人与机器人之间的力相互作用期间达到合规性,同时保证安全约束。特别是,入学控制的配方被重写为二阶非线性控制系统,并且人与机器人之间的相互作用力被视为控制输入。通过使用欧洲央行-QP框架作为外部人类力量的补偿器,实时提供了用于入学控制的虚拟力反馈。因此,安全轨迹是从建议的低级控制器进行跟踪的建议的自适应入学控制方案中得出的。拟议方法的创新是,拟议的控制器将使机器人能够自然流动性遵守人类力量,而无需违反任何安全限制,即使在人类外部力量偶然迫使机器人违反约束的情况下。在对两链平面机器人操纵器的仿真研究中,我们的方法的有效性得到了证明。
translated by 谷歌翻译
该论文提出了一个计划者,以使用质心动力学和人形机器人的完整运动学来产生步行轨迹。机器人与行走表面之间的相互作用是通过新条件明确建模的,即\ emph {动态互补性约束}。该方法不需要预定义的接触序列,并自动生成脚步。我们通过一组任务来表征机器人控制目标,并通过解决最佳控制问题来解决它。我们表明,可以通过指定最小的参考集,例如恒定所需的质量速度中心和地面上的参考点来自动实现行走运动。此外,我们分析了接触模型选择如何影响计算时间。我们通过为人形机器人ICUB生成和测试步行轨迹来验证该方法。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
本文开发了连续的蓬松蛋白可区分编程(连续PDP)的方法,该方法使机器人能够从少数稀疏的关键帧中学习目标函数。带有一些时间戳记的密钥帧是所需的任务空间输出,预计机器人将顺序遵循。密钥帧的时间戳可能与机器人的实际执行时间不同。该方法共同找到一个目标函数和一个盘绕函数,以使机器人的产生轨迹顺序遵循关键帧,并以最小的差异损失。连续的PDP通过有效求解机器人轨迹相对于未知参数的梯度,可以最大程度地减少投影梯度下降的差异损失。该方法首先在模拟机器人臂上进行评估,然后应用于6-DOF四极管,以在未建模的环境中学习目标函数。结果表明,该方法的效率,其处理密钥帧和机器人执行之间的时间错位的能力以及将客观学习对看不见的运动条件的概括。
translated by 谷歌翻译
机器人布操作是自动机器人系统的相关挑战性问题。高度可变形的对象,因为纺织品在操纵过程中可以采用多种配置和形状。因此,机器人不仅应该了解当前的布料配置,还应能够预测布的未来行为。本文通过使用模型预测控制(MPC)策略在对象的其他部分应用动作,从而解决了间接控制纺织对象某些点的配置的问题,该策略还允许间接控制的行为点。设计的控制器找到了最佳控制信号,以实现所需的未来目标配置。本文中的探索场景考虑了通过抓住其上角,以平方布的下角跟踪参考轨迹。为此,我们提出并验证线性布模型,该模型允许实时解决与MPC相关的优化问题。增强学习(RL)技术用于学习所提出的布模型的最佳参数,并调整所得的MPC。在模拟中获得准确的跟踪结果后,在真实的机器人中实现并执行了完整的控制方案,即使在不利条件下也可以获得准确的跟踪。尽管总观察到的误差达到5 cm标记,但对于30x30 cm的布,分析表明,MPC对该值的贡献少于30%。
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译
在许多无人机应用中,为空中机器人计划的时间轨迹至关重要,例如救援任务和包装交付,这些应用程序近年来已经广泛研究。但是,它仍然涉及一些挑战,尤其是在将特殊任务要求纳入计划以及空中机器人的动态方面。在这项工作中,我们研究了一种案例,使空中操纵器应以时间优势的方式从移动的移动机器人中移交一个包裹。我们没有手动设置方法轨迹,这使得很难确定在动态范围内完成所需任务的最佳总行进时间,而是提出了一个优化框架,该框架将离散的力学和互补性约束(DMCC)结合在一起。在提出的框架中,系统动力学受到离散的拉格朗日力学的约束,该机械也根据我们的实验提供了可靠的估计结果。移交机会是根据所需的互补限制自动确定和安排的。最后,通过使用我们的自设计的空中操纵器进行数值模拟和硬件实验来验证所提出的框架的性能。
translated by 谷歌翻译
可以使用几种技术来解决沿规定路径的最佳运动计划,但是大多数技术没有考虑到与环境接触时最终效用器所施加的扳手。当无法获得环境的动态模型时,就不存在合并方法来考虑相互作用的效果。无论要优化的特定性能指数如何,本文都提出了一种策略,将外部扳手包括在最佳计划算法中,考虑到任务规格。此过程是针对最小时间轨迹实例化的,并在接纳控制下执行交互任务的真实机器人进行了验证。结果证明,最终效应器扳手的包含会影响计划的轨迹,实际上改变了操纵器的动态能力。
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
在本文中,我们开辟了基于路径积分(PI)最优控制理论的可视伺服系统的新途径,其中可以将非线性部分微分方程(PDE)转换为使用Feynman的所有可能的轨迹的期望-KAC(FK)引理。更精确地,我们提出了基于采样的模型预测控制(即,模型预测路径积分(MPPI)控制)算法,提出了MPPI-VS控制策略,实时和无反转控制策略(即,模型预测路径积分(MPPI)控制)算法 - 基于,3D点和基于位置的可视伺服技术,考虑到系统约束(例如可见性,3D和控制约束)以及与机器人和相机模型相关联的参数不确定性以及测量噪声。与经典的视觉伺服控制方案相反,我们的控制策略直接利用交互矩阵的近似,而无需估计交互矩阵反转或执行伪反转。我们在带有引导摄像机的6-DOF笛卡尔机器人上验证MPPI-VS控制策略以及基于图像平面中的四个点作为视觉特征的常规摄像机。与经典计划相比,更好地评估和展示所提出的控制策略的鲁棒性和潜在优势,进行了各种操作条件下的密集模拟,然后讨论。所获得的结果证明了所提出的方案在容易与系统限制中应对的有效性和能力,以及在相机参数和测量中存在大误差的鲁棒性。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
模型预测控制(MPC)表明了控制诸如腿机器人等复杂系统的巨大成功。然而,在关闭循环时,在每个控制周期解决的有限范围最佳控制问题(OCP)的性能和可行性不再保证。这是由于模型差异,低级控制器,不确定性和传感器噪声的影响。为了解决这些问题,我们提出了一种修改版本,该版本的标准MPC方法用于带有活力的腿运动(弱向不变性)保证。在这种方法中,代替向问题添加(保守)终端约束,我们建议使用投影到在每个控制周期的OCP中的可行性内核中投影的测量状态。此外,我们使用过去的实验数据来找到最佳成本重量,该重量测量性能,约束满足鲁棒性或稳定性(不变性)的组合。这些可解释的成本衡量了稳健性和性能之间的贸易。为此目的,我们使用贝叶斯优化(BO)系统地设计实验,有助于有效地收集数据以了解导致强大性能的成本函数。我们的模拟结果具有不同的现实干扰(即外部推动,未铭出的执行器动态和计算延迟)表明了我们为人形机器人创造了强大的控制器的方法的有效性。
translated by 谷歌翻译