情绪转换(EVC)寻求转换话语的情绪状态,同时保留语言内容和扬声器身份。在EVC,情绪通常被视为离散类别,忽略了言论也传达了听众可以感知的各种强度水平的情绪。在本文中,我们的目标是明确地表征和控制情绪强度。我们建议解开语言内容的扬声器风格,并将扬声器风格编码成一个嵌入的嵌入空间,形成情绪嵌入的原型。我们进一步从情感标记的数据库中了解实际的情感编码器,并研究使用相对属性来表示细粒度的情绪强度。为确保情绪可理解性,我们将情感分类损失和情感嵌入了EVC网络培训中的相似性损失。根据需要,所提出的网络控制输出语音中的细粒度情绪强度。通过目标和主观评估,我们验证了建议网络的情感表达和情感强度控制的有效性。
translated by 谷歌翻译
情感语音综合旨在使人类的声音具有各种情感影响。当前的研究主要集中于模仿属于特定情感类型的平均风格。在本文中,我们试图在运行时与情感混合在一起。我们提出了一种新颖的表述,可以衡量不同情绪的语音样本之间的相对差异。然后,我们将公式纳入序列到序列情感文本到语音框架中。在培训期间,该框架不仅明确地表征了情感风格,而且还通过用其他情感量化差异来探索情绪的序数。在运行时,我们通过手动定义情感属性向量来控制模型以产生所需的情绪混合物。客观和主观评估验证了拟议框架的有效性。据我们所知,这项研究是关于言语中混合情绪的建模,综合和评估混合情绪的第一项研究。
translated by 谷歌翻译
在本文中,我们首先提供了述评最先进的情感语音转换研究以及现有的情绪语音数据库。然后,我们激励开发一种新颖的情绪语音数据库(ESD),这些数据库(ESD)解决了越来越多的研究需求。借鉴了本文,现在可以向研究界提供ESD数据库。ESD数据库由10名母语和10个母语的扬声器发表的350个平行话语组成,涵盖5个情感类别(中性,快乐,愤怒,悲伤和惊喜)。在受控的声学环境中记录了超过29小时的语音数据。该数据库适用于多扬声器和交叉语言情绪转换研究。如案例研究,我们在ESD数据库上实施了几种最先进的情绪转换系统。本文在释放释放时提供了对ESD的参考研究。
translated by 谷歌翻译
重音文本到语音(TTS)合成旨在以重音(L2)作为标准版本(L1)的变体生成语音。强调TTS合成具有挑战性,因为在语音渲染和韵律模式方面,L2在L1上都不同。此外,在话语中无法控制重音强度的解决方案。在这项工作中,我们提出了一种神经TTS体系结构,使我们能够控制重音及其在推理过程中的强度。这是通过三种新型机制来实现的,1)一种重音方差适配器,可以用三个韵律控制因子(即俯仰,能量和持续时间)对复杂的重音方差进行建模; 2)一种重音强度建模策略来量化重音强度; 3)一个一致性约束模块,以鼓励TTS系统在良好的水平上呈现预期的重音强度。实验表明,在重音渲染和强度控制方面,所提出的系统在基线模型上的性能优于基线模型。据我们所知,这是对具有明确强度控制的重音TT合成的首次研究。
translated by 谷歌翻译
Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an open challenging research question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for unsupervised training schemes to achieve robust large-scale and speaker-independent ASR. The aim of this paper is to address the disentanglement of emotional prosody from speech based on unsupervised reconstruction. Specifically, we identify, design, implement and integrate three crucial components in our proposed speech reconstruction model Prosody2Vec: (1) a unit encoder that transforms speech signals into discrete units for semantic content, (2) a pretrained speaker verification model to generate speaker identity embeddings, and (3) a trainable prosody encoder to learn prosody representations. We first pretrain the Prosody2Vec representations on unlabelled emotional speech corpora, then fine-tune the model on specific datasets to perform Speech Emotion Recognition (SER) and Emotional Voice Conversion (EVC) tasks. Both objective and subjective evaluations on the EVC task suggest that Prosody2Vec effectively captures general prosodic features that can be smoothly transferred to other emotional speech. In addition, our SER experiments on the IEMOCAP dataset reveal that the prosody features learned by Prosody2Vec are complementary and beneficial for the performance of widely used speech pretraining models and surpass the state-of-the-art methods when combining Prosody2Vec with HuBERT representations. Some audio samples can be found on our demo website.
translated by 谷歌翻译
Text-based speech editing allows users to edit speech by intuitively cutting, copying, and pasting text to speed up the process of editing speech. In the previous work, CampNet (context-aware mask prediction network) is proposed to realize text-based speech editing, significantly improving the quality of edited speech. This paper aims at a new task: adding emotional effect to the editing speech during the text-based speech editing to make the generated speech more expressive. To achieve this task, we propose Emo-CampNet (emotion CampNet), which can provide the option of emotional attributes for the generated speech in text-based speech editing and has the one-shot ability to edit unseen speakers' speech. Firstly, we propose an end-to-end emotion-selectable text-based speech editing model. The key idea of the model is to control the emotion of generated speech by introducing additional emotion attributes based on the context-aware mask prediction network. Secondly, to prevent the emotion of the generated speech from being interfered by the emotional components in the original speech, a neutral content generator is proposed to remove the emotion from the original speech, which is optimized by the generative adversarial framework. Thirdly, two data augmentation methods are proposed to enrich the emotional and pronunciation information in the training set, which can enable the model to edit the unseen speaker's speech. The experimental results that 1) Emo-CampNet can effectively control the emotion of the generated speech in the process of text-based speech editing; And can edit unseen speakers' speech. 2) Detailed ablation experiments further prove the effectiveness of emotional selectivity and data augmentation methods. The demo page is available at https://hairuo55.github.io/Emo-CampNet/
translated by 谷歌翻译
语音情感转换是修改语音话语的感知情绪的任务,同时保留词汇内容和扬声器身份。在这项研究中,我们将情感转换问题作为口语翻译任务。我们将演讲分解为离散和解散的学习表现,包括内容单位,F0,扬声器和情感。首先,我们通过将内容单元转换为目标情绪来修改语音内容,然后基于这些单元预测韵律特征。最后,通过将预测的表示馈送到神经声码器中来生成语音波形。这样的范式允许我们超越信号的光谱和参数变化,以及模型非口头发声,例如笑声插入,打开拆除等。我们客观地和主观地展示所提出的方法在基础上优于基线感知情绪和音频质量。我们严格评估了这种复杂系统的所有组成部分,并通过广泛的模型分析和消融研究结束,以更好地强调建议方法的建筑选择,优势和弱点。示例和代码将在以下链接下公开使用:https://speechbot.github.io/emotion。
translated by 谷歌翻译
In this paper, we present a novel method for phoneme-level prosody control of F0 and duration using intuitive discrete labels. We propose an unsupervised prosodic clustering process which is used to discretize phoneme-level F0 and duration features from a multispeaker speech dataset. These features are fed as an input sequence of prosodic labels to a prosody encoder module which augments an autoregressive attention-based text-to-speech model. We utilize various methods in order to improve prosodic control range and coverage, such as augmentation, F0 normalization, balanced clustering for duration and speaker-independent clustering. The final model enables fine-grained phoneme-level prosody control for all speakers contained in the training set, while maintaining the speaker identity. Instead of relying on reference utterances for inference, we introduce a prior prosody encoder which learns the style of each speaker and enables speech synthesis without the requirement of reference audio. We also fine-tune the multispeaker model to unseen speakers with limited amounts of data, as a realistic application scenario and show that the prosody control capabilities are maintained, verifying that the speaker-independent prosodic clustering is effective. Experimental results show that the model has high output speech quality and that the proposed method allows efficient prosody control within each speaker's range despite the variability that a multispeaker setting introduces.
translated by 谷歌翻译
在情感文本到语音和语音转换之类的应用中,需要对语音的情绪分类和情感强度评估。提出了基于支持向量机(SVM)的情绪属性排名函数,以预测情绪语音语料库的情绪强度。但是,训练有素的排名函数并未推广到新的域,这限制了应用程序范围,尤其是对于室外或看不见的语音。在本文中,我们提出了一个数据驱动的深度学习模型,即PRENTECHNET,以改善对可见和看不见的语音的情绪强度评估的概括。这是通过来自各个领域的情绪数据融合来实现的。我们遵循多任务学习网络体系结构,其中包括声学编码器,强度预测指标和辅助情感预测指标。实验表明,所提出的强度网的预测情绪强度与可见和看不见的言语的地面真实分数高度相关。我们在以下位置发布源代码:https://github.com/ttslr/strengthnet。
translated by 谷歌翻译
非平行的多与众不同的语音转换仍然是一项有趣但具有挑战性的语音处理任务。最近,基于有条件的自动编码器的方法AutoVC通过使用信息限制的瓶颈来删除说话者身份和语音内容,从而实现了出色的转换结果。但是,由于纯粹的自动编码器训练方法,很难评估内容和说话者身份的分离效果。在本文中,一个新颖的语音转换框架,名为$ \ boldsymbol t $ ext $ \ boldsymbol g $ uided $ \ boldsymbol a $ utovc(tgavc),提议更有效地将内容和音色与语音分开,其中预期的内容嵌入其中根据文本转录生产的旨在指导语音内容的提取。此外,对对抗性训练将用于消除从语音中提取的估计内容中的说话者身份信息。在预期内容嵌入和对抗培训的指导下,对内容编码器进行了培训,以从语音中提取嵌入说话者的内容。 Aishell-3数据集的实验表明,所提出的模型在自然性和转换语音的相似性方面优于AUTOVC。
translated by 谷歌翻译
通过语音转换(VC)的数据增强已成功应用于仅可用于目标扬声器的中性数据时,已成功地应用于低资源表达文本到语音(TTS)。尽管VC的质量对于这种方法至关重要,但学习稳定的VC模型是一项挑战,因为在低资源场景中的数据量受到限制,并且高度表达的语音具有很大的声学变化。为了解决这个问题,我们提出了一种新型的数据增强方法,该方法结合了变化和VC技术。由于换挡数据的增强功能可以覆盖各种音高动态,因此即使只有目标扬声器中性数据的1000个话语,它也可以极大地稳定VC和TTS模型的训练。主观测试结果表明,与常规方法相比,具有拟议方法的基于快速2的情绪TTS系统改善了自然性和情绪相似性。
translated by 谷歌翻译
机器生成的语音的特点是其有限或不自然的情绪变化。目前的语音系统文本与扁平情绪,从预定义的集合中选择的情感,从培训数据中的韵律序列中学到的平均变异,或者从源样式转移。我们向语音(TTS)系统提出了文本,其中用户可以从连续和有意义的情感空间(唤醒空间)中选择生成的语音的情绪。所提出的TTS系统可以从任何扬声器风格中的文本产生语音,具有对情绪的精细控制。我们展示该系统在培训期间无知的情感上的工作,并且可以鉴于他/她的演讲样本来扩展到以前看不见的扬声器。我们的作品将最先进的FastSeech2骨干的地平线扩展到多扬声器设置,并为其提供了多令人垂涎的连续(和可解释)的情感控制,而没有任何可观察到的综合演讲的退化。
translated by 谷歌翻译
近年来,表现力的文本到语音表现出改善的性能。但是,综合语音的样式控制通常仅限于离散的情绪类别,并且需要目标扬声器记录的培训数据。在许多实际情况下,用户可能没有在目标情感中记录的参考语音,但仅通过键入所需情感风格的文本描述来控制语音样式。在本文中,我们提出了一个基于文本的界面,用于情感风格控制和多演讲者TTS中的跨言式风格转移。我们提出了双模式样式编码器,该编码器模拟了文本描述嵌入与语言模型嵌入语音样式之间的语义关系。为了进一步改善横向扬声器风格的转移,在多种风格的数据集上,我们提出了新型样式损失。实验结果表明,即使以看不见的风格,我们的模型也可以产生高质量的表达语音。
translated by 谷歌翻译
无监督的零射声语音转换(VC)旨在修改话语的扬声器特性,以匹配看不见的目标扬声器,而无需依赖并行培训数据。最近,已经显示了语音表示的自我监督学习在不使用转录物的情况下产生有用的语言单元,这可以直接传递给VC模型。在本文中,我们展示了通过使用长度重采样解码器来实现高质量的音频样本,这使得VC模型能够与不同的语言特征提取器和声码器一起工作,而无需它们以相同的序列长度运行。我们表明,我们的方法可以胜过VCTK数据集的许多基线。在不修改架构的情况下,我们进一步展示了a)使用来自同一扬声器的不同音频段,b)添加循环一致性损失,并且c)添加扬声器分类损失可以有助于学习更好的扬声器嵌入。我们的模型使用这些技术训练了Libritts,实现了最佳性能,产生了音频样本对目标扬声器的声音,同时保留了在字符错误率方面与实际人类话语相当的语言内容。
translated by 谷歌翻译
我们提出了一项对基于自我监督的语音表示(S3R)语音转换(VC)的大规模比较研究。在识别合成VC的背景下,S3RS由于其替代昂贵的监督表示的潜力,例如语音后验(PPG),因此很有吸引力,这些表示是由最先进的VC系统采用的。使用先前开发的开源VC软件S3PRL-VC,我们在三种VC设置下提供了一系列深入的目标和主观分析:内部/跨语义的任何一对一(A2O)和任何对象 - 使用语音转换挑战2020(VCC2020)数据集。我们在各个方面研究了基于S3R的VC,包括模型类型,多语言和监督。我们还研究了通过K-均值聚类的滴定过程的效果,并展示了其在A2A设置中的改进。最后,与最先进的VC系统的比较证明了基于S3R的VC的竞争力,并阐明了可能的改进方向。
translated by 谷歌翻译
在本文中,介绍了文本到读取/唱歌系统,可以适应任何扬声器的声音。它利用基于TacoTron的多级箱子声学模型在只读语音数据训练,并且在音素级别提供韵律控制。还研究了基于传统DSP算法的数据集增强和额外的韵律操纵。神经TTS模型对看不见的扬声器的有限录音进行了微调,允许与目标的扬声器语音进行敲击/歌唱合成。描述了系统的详细管道,其包括从Capella歌曲的目标音调和持续时间值提取,并将其转换为在合成之前的目标扬声器的有效音符范围内。还研究了通过WSOLA输出的输出的韵律操纵的另外的阶段,以便更好地匹配目标持续时间值。合成的话语可以与乐器伴奏轨道混合以产生完整的歌曲。通过主观聆听测试评估所提出的系统,以及与可用的备用系统相比,该系统还旨在从只读训练数据产生合成歌唱语音。结果表明,该拟议的方法可以产生高质量的敲击/歌声,具有增加的自然。
translated by 谷歌翻译
Accent plays a significant role in speech communication, influencing understanding capabilities and also conveying a person's identity. This paper introduces a novel and efficient framework for accented Text-to-Speech (TTS) synthesis based on a Conditional Variational Autoencoder. It has the ability to synthesize a selected speaker's speech that is converted to any desired target accent. Our thorough experiments validate the effectiveness of our proposed framework using both objective and subjective evaluations. The results also show remarkable performance in terms of the ability to manipulate accents in the synthesized speech and provide a promising avenue for future accented TTS research.
translated by 谷歌翻译
像有声读物的综合一样,表达性语音综合仍然对样式表示学习和预测仍然具有挑战性。从参考音频或从文本预测样式标签中得出的标签需要大量标记的数据,这是昂贵的,并且难以准确定义和注释。在本文中,我们提出了一个新颖的框架,以一种自我监督的方式从丰富的纯文本中学习样式表示。它利用情感词典,并使用对比度学习和深度聚类。我们进一步将样式表示形式整合为多式变压器TTS中的条件嵌入。通过预测在同一数据集上训练的样式标签,但通过人类注释,我们的方法根据对声音域内和室外测试集的主观评估来改进结果,从而获得了改进的结果。此外,有了隐性的背景感知样式表示,长期综合音频的情感过渡似乎更自然。音频样本可在演示网络上找到。
translated by 谷歌翻译
现有的语音克隆(VC)任务旨在将段落文本转换为具有参考音频指定的所需语音的语音。这显着提高了人工语音应用的发展。然而,也存在许多情景,这些方案不能被这些VC任务更好地反映,例如电影配音,这需要语音与与电影图一致的情绪。为了填补这个差距,在这项工作中,我们提出了一个名为Visual Voice Cloning(V2C)的新任务,该任务试图将文本段落转换为具有由参考视频指定的参考音频和所需情绪指定的所需语音的语音。为了促进该领域的研究,我们构建数据集,V2C动画,并根据现有的最先进(SOTA)VC技术提出强大的基线。我们的数据集包含10,217个动画电影剪辑,覆盖各种类型的类型(例如,喜剧,幻想)和情感(例如,快乐,悲伤)。我们进一步设计了一组名为MCD-DTW-SL的评估度量,这有助于评估地面真理语音和合成的相似性。广泛的实验结果表明,即使是SOTA VC方法也不能为我们的V2C任务产生令人满意的演讲。我们希望拟议的新任务与建设的数据集和评估度量一起将促进语音克隆领域的研究和更广泛的视野和语言社区。
translated by 谷歌翻译
本文介绍了对F0的音素级韵律控制的方法和多销箱文本到语音设置的持续时间,基于韵律聚类。使用自回归关注的模型,并将多个箱子架构模块并联,与韵律编码器并联。提出了对基本单扬声器方法的几种改进,从而增加了韵律控制范围和覆盖范围。更具体地说,我们采用数据增强,F0​​标准化,持续时间的平衡集群,以及扬声器无关的韵律聚类。这些修改使培训集中包含的所有发言者能够进行细粒度的音素级韵律控制,同时保持扬声器标识。该模型也可以微调到具有限制数据量的看不见的扬声器,并显示其维持其韵律控制能力,验证说话者无关的韵律聚类是有效的。实验结果验证了该模型维持了高输出语音质量,并且该方法允许在每个扬声器范围内有效的韵律控制,尽管多种式箱子设置介绍的变化。
translated by 谷歌翻译