Monitoring changes inside a reservoir in real time is crucial for the success of CO2 injection and long-term storage. Machine learning (ML) is well-suited for real-time CO2 monitoring because of its computational efficiency. However, most existing applications of ML yield only one prediction (i.e., the expectation) for a given input, which may not properly reflect the distribution of the testing data, if it has a shift with respect to that of the training data. The Simultaneous Quantile Regression (SQR) method can estimate the entire conditional distribution of the target variable of a neural network via pinball loss. Here, we incorporate this technique into seismic inversion for purposes of CO2 monitoring. The uncertainty map is then calculated pixel by pixel from a particular prediction interval around the median. We also propose a novel data-augmentation method by sampling the uncertainty to further improve prediction accuracy. The developed methodology is tested on synthetic Kimberlina data, which are created by the Department of Energy and based on a CO2 capture and sequestration (CCS) project in California. The results prove that the proposed network can estimate the subsurface velocity rapidly and with sufficient resolution. Furthermore, the computed uncertainty quantifies the prediction accuracy. The method remains robust even if the testing data are distorted due to problems in the field data acquisition. Another test demonstrates the effectiveness of the developed data-augmentation method in increasing the spatial resolution of the estimated velocity field and in reducing the prediction error.
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
本文介绍了频率卷积神经网络(CNN),用于快速,无创的​​2D剪切波速度(VS)成像的近表面地质材料。在频速度域中运行,可以在用于生成CNN输入的线性阵列,主动源实验测试配置中具有显着的灵活性,这些配置是归一化的分散图像。与波场图像不同,标准化的分散图像对实验测试配置相对不敏感,可容纳各种源类型,源偏移,接收器数量和接收器间距。我们通过将其应用于经典的近乎表面地球物理学问题,即成像两层,起伏的土壤 - 旁质界面的界面来证明频率CNN的有效性。最近,通过开发一个时间距离CNN来研究这个问题,该问题表现出了很大的希望,但在使用不同的现场测试配置方面缺乏灵活性。本文中,新的频道CNN显示出与时距CNN的可比精度,同时提供了更大的灵活性来处理各种现场应用程序。使用100,000个合成近表面模型对频率速度CNN进行了训练,验证和测试。首先,使用训练集的合成近表面模型测试了提议的频率CNN跨各种采集配置概括跨各种采集配置的能力,然后应用于在Austin的Hornsby Bend在Austin的Hornsby Bend收集的实验场数据美国德克萨斯州,美国。当针对更广泛的地质条件范围充分开发时,提出的CNN最终可以用作当前伪2D表面波成像技术的快速,端到端替代方案,或开发用于完整波形倒置的启动模型。
translated by 谷歌翻译
我们展示了OpenFWI,是用于地震全波形反演(FWI)的大型开源基准数据集的集合。OpenFWI是地球科学和机器学习界的一流,以促进对基于机器学习的FWI多元化,严谨和可重复的研究。OpenFWI包括多个尺度的数据集,包含不同的域,涵盖各种级别的模型复杂性。除了数据集之外,我们还对每个数据集进行实证研究,具有完全卷积的深度学习模型。OpenFWI已被核心维护,并将通过新数据和实验结果定期更新。我们感谢社区的投入,帮助我们进一步改进OpenFWI。在当前版本,我们在OpenFWI中发布了七个数据集,其中为3D FWI指定了一个,其余的是2D场景。所有数据集和相关信息都可以通过我们的网站访问https://openfwi.github.io/。
translated by 谷歌翻译
在地质不确定性下,快速同化监测数据以更新压力累积和压力累积和二氧化碳(CO2)羽流迁移的预测是地质碳储存中的一个具有挑战性的问题。具有高维参数空间的数据同化的高计算成本阻碍了商业规模库管理的快速决策。我们建议利用具有深度学习技术的多孔介质流动行为的物理理解,以开发快速历史匹配 - 水库响应预测工作流程。应用集合更顺畅的多数据同化框架,工作流程更新地质特性,并通过通过地震反转解释的压力历史和二氧化碳羽毛的量化不确定性来预测水库性能。由于这种工作流程中最具计算昂贵的组件是储层模拟,我们开发了代理模型,以在多孔注射下预测动态压力和CO2羽流量。代理模型采用深度卷积神经网络,具体地,宽的剩余网络和残留的U-Net。该工作流程针对代表碎屑货架沉积环境的扁平三维储层模型验证。智能处理应用于真正的3D储层模型中数量与单层储层模型之间的桥梁。工作流程可以在主流个人工作站上不到一小时内完成历史匹配和储库预测,在不到一小时内。
translated by 谷歌翻译
Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We propose to use migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a Convolutional Neural Network (CNN). Our approach relies on subsurface Common Image Gathers to focus the sediments' reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we trained a U-Net to use common-offset subsurface images as input channels for the CNN and the correct salt-masks as network output. The network learned to predict the salt inclusions masks with high accuracy; moreover, it also performed well when applied to synthetic benchmark data sets that were not previously introduced. Our training process tuned the U-Net to successfully learn the shape of complex salt bodies from partially focused subsurface offset images.
translated by 谷歌翻译
全波形反演(FWI)通常代表成像地下结构和物理参数的最新方法,但是,其实施通常面临着巨大的挑战,例如建立一个良好的初始模型以逃脱本地的最小值,并评估评估反转结果的不确定性。在本文中,我们建议使用连续和隐式定义的深神经表示形式提出隐式全波形反演(IFWI)算法。与对初始模型敏感的FWI相比,IFWI从增加的自由度中受益于深度学习优化,从而可以从随机初始化开始,从而大大降低了非唯一性的风险,并被当地的微型捕获。理论分析和实验分析都表明,在随机初始模型的情况下,IFWI能够收敛到全局最小值并产生具有精细结构的地下的高分辨率图像。此外,通过使用各种深度学习方法近似贝叶斯推断,可以轻松地对IFWI进行不确定性分析,这在本文中通过添加辍学神经元进行了分析。此外,IFWI具有一定程度的鲁棒性和强大的概括能力,在各种2D地质模型的实验中被例证。通过适当的设置,IFWI也可以非常适合多规模关节地球物理反演。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
颠倒地震数据以建立3D地质结构是一项艰巨的任务,这是由于大量获得的地震数据,以及由于波动方程的迭代数值解决方案而引起的最高计算负载,如行业标准的工具所要求的,例如Full WaveForm反转(FWI)。例如,在3.5公里$ \ $ 4.5公里的地面尺寸的区域中,3D模型重建需要数百个地震射击场立方体,从而导致记录数据的Terabytes。本文提出了一种深度学习解决方案,用于在地震调查中记录的田间噪声的情况下重建现实的3D模型。我们实施和分析了一个卷积编码器架构,该体系结构有效地处理了数百种地震收集立方体的整个集合。所提出的解决方案表明,在存在10dB信噪比的场噪声的情况下,可以以结构相似性指数度量(SSIM)为0.8554(在1.0中)重建现实的3D模型。
translated by 谷歌翻译
最近实现了更准确的短期预测的数据驱动的空气质量预测。尽管取得了成功,但大多数目前的数据驱动解决方案都缺乏适当的模型不确定性的量化,以传达信任预测的程度。最近,在概率深度学习中已经制定了几种估计不确定性的实用工具。但是,在空气质量预测领域的域中没有经验应用和广泛的比较这些工具。因此,这项工作在空气质量预测的真实环境中应用了最先进的不确定性量化。通过广泛的实验,我们描述了培训概率模型,并根据经验性能,信心可靠性,置信度估计和实际适用性评估其预测性不确定性。我们还使用空气质量数据中固有的“自由”对抗培训和利用时间和空间相关性提出改善这些模型。我们的实验表明,所提出的模型比以前的工作更好地在量化数据驱动空气质量预测中的不确定性方面表现出。总体而言,贝叶斯神经网络提供了更可靠的不确定性估计,但可能挑战实施和规模。其他可扩展方法,如深合奏,蒙特卡罗(MC)辍学和随机重量平均-Gaussian(SWAG)可以执行良好,如果正确应用,但具有不同的权衡和性能度量的轻微变化。最后,我们的结果表明了不确定性估计的实际影响,并证明了,实际上,概率模型更适合提出知情决策。代码和数据集可用于\ url {https:/github.com/abdulmajid-murad/deep_probabilistic_forecast}
translated by 谷歌翻译
Uncertainty quantification (UQ) has increasing importance in building robust high-performance and generalizable materials property prediction models. It can also be used in active learning to train better models by focusing on getting new training data from uncertain regions. There are several categories of UQ methods each considering different types of uncertainty sources. Here we conduct a comprehensive evaluation on the UQ methods for graph neural network based materials property prediction and evaluate how they truly reflect the uncertainty that we want in error bound estimation or active learning. Our experimental results over four crystal materials datasets (including formation energy, adsorption energy, total energy, and band gap properties) show that the popular ensemble methods for uncertainty estimation is NOT the best choice for UQ in materials property prediction. For the convenience of the community, all the source code and data sets can be accessed freely at \url{https://github.com/usccolumbia/materialsUQ}.
translated by 谷歌翻译
反转技术被广泛用于重建基于表面的地球物理测量值(例如,地震,电气/磁(EM)数据)的地下物理特性(例如,速度,电导率)。这些问题受波浪或麦克斯韦方程等部分微分方程(PDE)的控制。解决地球物理反演问题由于不适当和高计算成本而具有挑战性。为了减轻这些问题,最近的研究利用深层神经网络来学习从测量到物业的倒置映射。在本文中,我们表明,这样的映射可以通过仅有五层的非常浅(但不是宽)网络来很好地建模。这是基于我们对有趣属性的新发现来实现的:在高维空间中应用积分变换后,输入和输出之间的近乎线性关系。特别是,在处理由波方程控制的从地震数据到地下速度的反演时,与高斯核的速度的积分结果与正弦核的地震数据的积分线性相关。此外,该属性可以轻松地转变为用于反转的轻质编码器网络。编码器包含地震数据和线性转换的整合,而无需进行微调。解码器仅由一个单个变压器块组成,以逆转速度的积分。实验表明,这种有趣的属性可用于四个不同数据集的两个地球物理倒置问题。与更深的倒置网络相比,我们的方法达到了可比的精度,但消耗的参数大大减少。
translated by 谷歌翻译
我们提出了一种基于深度学习的代理模型,用于解决高维不确定性量化和不确定性传播问题。通过将众所周知的U-Net架构与高斯门控线性网络(GGLN)集成并称为所界线线性网络引起的U-Net或Glu-Net,通过将众所周知的U-Net架构进行了开发了建议的深度学习架构。所提出的Glu-Net将不确定性传播问题视为图像回归的图像,因此是极其数据效率。此外,它还提供了预测性不确定性的估计。 Glu-Net的网络架构不太复杂,参数比当代作品较少44 \%。我们说明了所提议的Glu-net在稀疏数据场景下在不确定性下解决达西流动问题的表现。我们认为随机输入维度最高可达4225.使用香草蒙特卡罗模拟产生基准结果。即使没有关于输入的结构的信息提供对网络的结构的信息,我们也观察到所提出的Glu-Net是准确的,非常有效。通过改变训练样本大小和随机输入维度来进行案例研究以说明所提出的方法的稳健性。
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
数据驱动方法已被证明是解决复杂科学问题的有希望的技术。全波形反转(FWI)通常被阐述为图像到图像转换任务,这激励了深度神经网络作为端到端解决方案的使用。尽管采用了合成数据培训,但在用足够的真实数据评估时,深度学习驱动的FWI预计将表现良好。在本文中,我们通过询问研究此类属性:这些深度神经网络的强大是如何发展以及它们如何概括?对于稳健性,我们证明了从清洁和嘈杂数据之间预测之间的偏差的上限。此外,我们展示了噪声水平与额外损失增益之间的相互作用。对于泛化,我们通过稳定性泛化框架证明了基于常规的泛化误差。地震FWI数据集与理论结果的实验​​结果,揭示了利用深度学习对复杂的科学应用的影响。
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
我们引入了三种算法,将模拟重力数据倒入3D地下岩石/流属性。第一种算法是一种基于数据驱动的,基于深度学习的方法,第二个算法将深度学习方法与物理建模混合到单个工作流程中,第三个考虑了表面重力监测的时间依赖性。这些提出的算法的目标应用是地下CO $ _2 $李子作为监视CO $ _2 $固存部部署的补充工具的预测。每种提出的算法的表现都优于传统的反转方法,并在几乎实时实时产生高分辨率的3D地下重建。我们提出的方法以$ \ mu $ gals的形式获得了预测的羽状几何形状和接近完美数据失误的骰子得分。这些结果表明,将4D表面重力监测与深度学习技术相结合代表了一种低成本,快速和非侵入性的方法,用于监测CO $ _2 $存储站点。
translated by 谷歌翻译
美国宇航局的全球生态系统动力学调查(GEDI)是一个关键的气候使命,其目标是推进我们对森林在全球碳循环中的作用的理解。虽然GEDI是第一个基于空间的激光器,明确优化,以测量地上生物质的垂直森林结构预测,这对广泛的观测和环境条件的大量波形数据的准确解释是具有挑战性的。在这里,我们提出了一种新颖的监督机器学习方法来解释GEDI波形和全球标注冠层顶部高度。我们提出了一种基于深度卷积神经网络(CNN)集合的概率深度学习方法,以避免未知效果的显式建模,例如大气噪声。该模型学会提取概括地理区域的强大特征,此外,产生可靠的预测性不确定性估计。最终,我们模型产生的全球顶棚顶部高度估计估计的预期RMSE为2.7米,低偏差。
translated by 谷歌翻译