我们分析了旋转模糊性在应​​用于球形图像的卷积神经网络(CNN)中的作用。我们比较了被称为S2CNN的组等效网络的性能和经过越来越多的数据增强量的标准非等级CNN。所选的体系结构可以视为相应设计范式的基线参考。我们的模型对投影到球体的MNIST或FashionMnist数据集进行了训练和评估。对于固有旋转不变的图像分类的任务,我们发现,通过大大增加数据增强量和网络的大小,标准CNN可以至少达到与Equivariant网络相同的性能。相比之下,对于固有的等效性语义分割任务,非等级网络的表现始终超过具有较少参数的模棱两可的网络。我们还分析和比较了不同网络的推理潜伏期和培训时间,从而实现了对等效架构和数据扩展之间的详细权衡考虑,以解决实际问题。实验中使用的均衡球网络可在https://github.com/janegerken/sem_seg_s2cnn上获得。
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
现有的球形卷积神经网络(CNN)框架在计算方面既可以扩展又是旋转等值的。连续的方法捕获旋转模棱两可,但通常在计算上是过时的。离散的方法提供了更有利的计算性能,但付出了损失。我们开发了一个混合离散(迪斯科)组卷积,该卷积同时均具有等效性,并且在计算上可扩展到高分辨率。虽然我们的框架可以应用于任何紧凑的组,但我们专注于球体。我们的迪斯科球形卷积不仅表现出$ \ text {so}(3)$ rotational equivariance,而且还表现出一种渐近$ \ text {so}(3)/\ text {so}(so}(so}(2)$ rotationation eporational ecorivarianciancience,对于许多应用程序(其中$ \ text {so}(n)$是特殊的正交组,代表$ n $ dimensions中的旋转)。通过稀疏的张量实现,我们可以在球体上的像素数量进行线性缩放,以供计算成本和内存使用情况。对于4K球形图像,与最有效的替代替代品量球卷积相比,我们意识到节省了$ 10^9 $的计算成本和$ 10^4 $的内存使用情况。我们将迪斯科球形CNN框架应用于球体上的许多基准密集预测问题,例如语义分割和深度估计,在所有这些问题上,我们都达到了最先进的性能。
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
卷积神经网络(CNN)在翻译下是固有的等分反,但是,它们没有等效的嵌入机制来处理其他变换,例如旋转和规模变化。存在几种方法,使CNN通过设计在其他转换组下变得等效。其中,可操纵的CNN特别有效。然而,这些方法需要将滤波器重新设计标准网络,筛选涉及复杂的分析功能的预定义基的组合。我们通过实验证明,在选择的基础上的这些限制可能导致模型权重,这对主要深度学习任务进行了次优(例如,分类)。此外,这种硬烘焙的显式配方使得难以设计包括异质特征组的复合网络。为了规避此类问题,我们提出了隐含的等级网络(IEN),其通过优化与标准损耗术语相结合的多目标损耗函数来诱导标准CNN模型的不同层的等级。通过在ROT-MNIST上的VGG和RESNET模型的实验,ROT-TINIMAGENET,SCALE-MNIST和STL-10数据集上,我们表明IEN,即使是简单的配方,也要优于可操纵网络。此外,IEN促进了非均相过滤器组的构建,允许CNNS中的通道数量减少超过30%,同时保持与基线的表现。 IEN的功效进一步验证了视觉对象跟踪的难题。我们表明IEN优于最先进的旋转等级跟踪方法,同时提供更快的推理速度。
translated by 谷歌翻译
标准卷积神经网络(CNN)的卷积层与翻译一样。然而,卷积和完全连接的层与其他仿射几何变换并不是等等的或不变的。最近,提出了一类新的CNN,其中CNN的常规层被均衡卷积,合并和批量归一化层代替。 eprovariant神经网络中的最终分类层对于不同的仿射几何变换(例如旋转,反射和翻译)是不变的,并且标量值是通过消除过滤器响应的空间尺寸,使用卷积和向下缩采样的整个网络或平均值来获得。接管过滤器响应。在这项工作中,我们建议整合正交力矩,该矩将功能的高阶统计数据作为编码全局不变性在旋转,反射和翻译中的有效手段。结果,网络的中间层变得模棱两可,而分类层变得不变。出于这个目的,考虑使用最广泛使用的Zernike,伪菜单和正交傅立叶粉刺矩。通过在旋转的MNIST和CIFAR10数据集上集成了组等级CNN(G-CNN)的体系结构中的不变过渡和完全连接的层来评估所提出的工作的有效性。
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
We observe that despite their hierarchical convolutional nature, the synthesis process of typical generative adversarial networks depends on absolute pixel coordinates in an unhealthy manner. This manifests itself as, e.g., detail appearing to be glued to image coordinates instead of the surfaces of depicted objects. We trace the root cause to careless signal processing that causes aliasing in the generator network. Interpreting all signals in the network as continuous, we derive generally applicable, small architectural changes that guarantee that unwanted information cannot leak into the hierarchical synthesis process. The resulting networks match the FID of StyleGAN2 but differ dramatically in their internal representations, and they are fully equivariant to translation and rotation even at subpixel scales. Our results pave the way for generative models better suited for video and animation. * This work was done during an internship at NVIDIA. 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
translated by 谷歌翻译
基于2D图像的3D对象的推理由于从不同方向查看对象引起的外观差异很大,因此具有挑战性。理想情况下,我们的模型将是对物体姿势变化的不变或等效的。不幸的是,对于2D图像输入,这通常是不可能的,因为我们没有一个先验模型,即在平面外对象旋转下如何改变图像。唯一的$ \ mathrm {so}(3)$ - 当前存在的模型需要点云输入而不是2D图像。在本文中,我们提出了一种基于Icosahedral群卷积的新型模型体系结构,即通过将输入图像投影到iCosahedron上,以$ \ mathrm {so(3)} $中的理由。由于此投影,该模型大致与$ \ mathrm {so}(3)$中的旋转大致相当。我们将此模型应用于对象构成估计任务,并发现它的表现优于合理的基准。
translated by 谷歌翻译
卷积神经网络(CNNS)非常有效,因为它们利用自然图像的固有转换不变性。但是,翻译只是无数的有用空间转换之一。在考虑其他空间的侵犯侵犯性时可以获得相同的效率吗?过去已经考虑过这种广义综合,但以高计算成本为例。我们展示了一个简单和精确的建筑,但标准卷积具有相同的计算复杂性。它由一个恒定的图像扭曲,后跟一个简单的卷积,这是深度学习工具箱中的标准块。通过精心制作的经线,所产生的架构可以使成功的架构成为各种各样的双参数空间转换。我们展示了令人鼓舞的现实情景结果,包括谷歌地球数据集(旋转和缩放)中车辆姿势的估计,并且面部在野外注释的面部地标中的面部姿势(在透视下的3D旋转)。
translated by 谷歌翻译
将组对称性直接纳入学习过程,已被证明是模型设计的有效准则。通过生产保证对输入上的组动作改造协议的功能,Group-Secrivariant卷积神经网络(G-CNN)在具有内在对称的学习任务中实现了显着改善的泛化性能。已经研究了G-CNNS的一般理论和实际实施,用于旋转或缩放变换下的平面图像,但仅是单独的。在本文中,我们存在roto-scale-pranslance的CNN(RST-CNN),保证通过耦合组卷积来实现这三个组的增义性。此外,随着现实中的对称变换很少是非常完美的并且通常会受到输入变形的影响,我们提供了对输入失真的表示的等意识的稳定性分析,这激励了(预固定)低频空间下的卷积滤波器的截断扩展模式。所得到的模型可被证明可以实现变形 - 稳健的RST标准,即RST对称性仍然“大约”保存,当通过滋扰数据变形时“被污染”,这是对分布外概述尤为重要的属性。 Mnist,Fashion-Mnist和STL-10的数值实验表明,所提出的模型在现有技术中产生显着的增益,尤其是在数据内旋转和缩放变化的小数据制度中。
translated by 谷歌翻译
Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner. In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network. This differentiable module can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimisation process. We show that the use of spatial transformers results in models which learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art performance on several benchmarks, and for a number of classes of transformations.
translated by 谷歌翻译
标准情况被出现为对构成组的身份保留转换的物体表示的理想性质,例如翻译和旋转。然而,由组标准规定的表示的表示的表现仍然不完全理解。我们通过提供封面函数计数定理的概括来解决这个差距,这些定理量化了可以分配给物体的等异点的线性可分离和组不变二进制二分层的数量。我们发现可分离二分法的分数由由组动作固定的空间的尺寸决定。我们展示了该关系如何扩展到卷积,元素 - 明智的非线性和全局和本地汇集等操作。虽然其他操作不会改变可分离二分法的分数,但尽管是高度非线性操作,但是局部汇集减少了分数。最后,我们在随机初始化和全培训的卷积神经网络的中间代表中测试了我们的理论,并找到了完美的协议。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
现有的等分性神经网络需要先前了解对称组和连续组的离散化。我们建议使用Lie代数(无限发电机)而不是谎言群体。我们的模型,Lie代数卷积网络(L-Chir)可以自动发现对称性,并不需要该组的离散化。我们展示L-CONC可以作为构建任何组的建筑块,以构建任何组的馈电架构。CNN和图表卷积网络都可以用适当的组表示为L-DIV。我们发现L-CONC和物理学之间的直接连接:(1)组不变损失概括场理论(2)欧拉拉格朗法令方程测量鲁棒性,(3)稳定性导致保护法和挪威尔特。这些连接开辟了新的途径用于设计更多普遍等级的网络并将其应用于物理科学中的重要问题
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
小组卷积神经网络(G-CNN)是卷积神经网络(CNN)的概括,通过在其体系结构中明确编码旋转和排列,在广泛的技术应用中脱颖而出。尽管G-CNN的成功是由它们的\ emph {emplapicit}对称偏见驱动的,但最近的一项工作表明,\ emph {隐式}对特定体系结构的偏差是理解过度参数化神经网的概​​括的关键。在这种情况下,我们表明,通过梯度下降训练了二进制分类的$ L $ layer全宽线性G-CNN,将二进制分类收敛到具有低级别傅立叶矩阵系数的解决方案,并由$ 2/l $ -schatten矩阵规范正规化。我们的工作严格概括了先前对线性CNN的隐性偏差对线性G-CNN的隐性分析,包括所有有限组,包括非交换组的挑战性设置(例如排列),以及无限组的频段限制G-CNN 。我们通过在各个组上实验验证定理,并在经验上探索更现实的非线性网络,该网络在局部捕获了相似的正则化模式。最后,我们通过不确定性原理提供了对傅立叶空间隐式正则化的直观解释。
translated by 谷歌翻译
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and other transformations belonging to an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, the implementation of a kernel basis does not generalize to other symmetry transformations, which complicates the development of group equivariant models. We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels. The resulting framework offers a simple and flexible way to implement Steerable CNNs and generalizes to any group $G$ for which a $G$-equivariant MLP can be built. We apply our method to point cloud (ModelNet-40) and molecular data (QM9) and demonstrate a significant improvement in performance compared to standard Steerable CNNs.
translated by 谷歌翻译
本文为旋转组开发了旋转不变的阵阵卷积,因此(3)可以提炼球形信号的多尺度信息。球形的阵头变换从$ \ mathbb {s}^2 $推广到SO(3)组,该组通过一组紧密的Framelet操作员将球形信号分解为近似和详细的光谱系数。分解和重建过程中的球形信号实现了旋转不变性。基于阵型变换,我们形成了一个带有多个SO(3)一面卷积层的NEDLET近似均值球形CNN(NES)。该网络建立了一个强大的工具,可以提取球形信号的几何不变特征。该模型允许具有多分辨率表示的足够网络可伸缩性。通过小波收缩激活函数学习了强大的信号嵌入,该函数会过滤冗余高通表示,同时保持近似旋转不变性。 NES实现了量子化学回归和宇宙微波背景(CMB)的最新性能,删除重建,这显示了通过高分辨率和多尺度球形信号表示解决科学挑战的巨大潜力。
translated by 谷歌翻译