本文分析了面部检测体系结构的设计选择,以提高计算成本和准确性之间的效率。具体而言,我们重新检查了标准卷积块作为面部检测的轻质骨干结构的有效性。与当前的轻质体系结构设计的趋势(大量利用了可分开的卷积层)不同,我们表明,使用类似的参数大小时,大量通道绕的标准卷积层可以实现更好的准确性和推理速度。关于目标数据域的特征的分析,该观察结果得到了支持。根据我们的观察,我们建议使用高度降低的通道使用Resnet,与其他移动友好网络(例如Mobilenet-V1,-V2,-V3)相比,它具有高度效率。从广泛的实验中,我们表明所提出的主链可以以更快的推理速度替换最先进的面部检测器的主链。此外,我们进一步提出了一种最大化检测性能的新功能聚合方法。我们提出的检测器ERESFD获得了更宽的面部硬子子集的80.4%地图,该图仅需37.7 ms即可在CPU上进行VGA图像推断。代码将在https://github.com/clovaai/eresfd上找到。
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
近年来,基于深度学习的面部检测算法取得了长足的进步。这些算法通常可以分为两类,即诸如更快的R-CNN和像Yolo这样的单阶段检测器之类的两个阶段检测器。由于准确性和速度之间的平衡更好,因此在许多应用中广泛使用了一阶段探测器。在本文中,我们提出了一个基于一阶段检测器Yolov5的实时面部检测器,名为Yolo-Facev2。我们设计一个称为RFE的接收场增强模块,以增强小面的接受场,并使用NWD损失来弥补IOU对微小物体的位置偏差的敏感性。对于面部阻塞,我们提出了一个名为Seam的注意模块,并引入了排斥损失以解决它。此外,我们使用重量函数幻灯片来解决简单和硬样品之间的不平衡,并使用有效的接收场的信息来设计锚。宽面数据集上的实验结果表明,在所有简单,中和硬子集中都可以找到我们的面部检测器及其变体的表现及其变体。源代码https://github.com/krasjet-yu/yolo-facev2
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
更好的准确性和效率权衡在对象检测中是一个具有挑战性的问题。在这项工作中,我们致力于研究对象检测的关键优化和神经网络架构选择,以提高准确性和效率。我们调查了无锚策略对轻质对象检测模型的适用性。我们增强了骨干结构并设计了颈部的轻质结构,从而提高了网络的特征提取能力。我们改善标签分配策略和损失功能,使培训更稳定和高效。通过这些优化,我们创建了一个名为PP-Picodet的新的实时对象探测器系列,这在移动设备的对象检测上实现了卓越的性能。与其他流行型号相比,我们的模型在准确性和延迟之间实现了更好的权衡。 Picodet-s只有0.99m的参数达到30.6%的地图,它是地图的绝对4.8%,同时与yolox-nano相比将移动CPU推理延迟减少55%,并且与Nanodet相比,MAP的绝对改善了7.1%。当输入大小为320时,它在移动臂CPU上达到123个FPS(使用桨Lite)。Picodet-L只有3.3M参数,达到40.9%的地图,这是地图的绝对3.7%,比yolov5s更快44% 。如图1所示,我们的模型远远优于轻量级对象检测的最先进的结果。代码和预先训练的型号可在https://github.com/paddlepaddle/paddledentions提供。
translated by 谷歌翻译
本文提出了平行残留的双融合特征金字塔网络(PRB-FPN),以快速准确地单光对象检测。特征金字塔(FP)在最近的视觉检测中被广泛使用,但是由于汇总转换,FP的自上而下的途径无法保留准确的定位。随着使用更多层的更深骨干,FP的优势被削弱了。此外,它不能同时准确地检测到小物体。为了解决这些问题,我们提出了一种新的并行FP结构,具有双向(自上而下和自下而上)的融合以及相关的改进,以保留高质量的特征以进行准确定位。我们提供以下设计改进:(1)具有自下而上的融合模块(BFM)的平行分歧FP结构,以高精度立即检测小物体和大对象。 (2)串联和重组(CORE)模块为特征融合提供了自下而上的途径,该途径导致双向融合FP,可以从低层特征图中恢复丢失的信息。 (3)进一步纯化核心功能以保留更丰富的上下文信息。自上而下和自下而上的途径中的这种核心净化只能在几次迭代中完成。 (4)将残留设计添加到核心中,导致了一个新的重核模块,该模块可以轻松训练和集成,并具有更深入或更轻的骨架。所提出的网络可在UAVDT17和MS COCO数据集上实现最新性能。代码可在https://github.com/pingyang1117/prbnet_pytorch上找到。
translated by 谷歌翻译
近年来使用卷积神经网络对近年来的脸部检测进行了巨大进展。虽然许多面部探测器使用指定用于检测面的设计,但我们将面部检测视为通用对象检测任务。我们基于YOLOV5对象检测器实现了面部探测器,并调用它YOLO5FACE。我们对YOLOV5进行了一些关键修改,并优化了面部检测。这些修改包括在SPP中使用较小尺寸内核在骨干内使用杆块添加五点地标回归头,并在平移块中添加P6输出。我们从超大型模型设计不同型号大小的探测器,以实现对嵌入或移动设备的实时检测的超小型模型的最佳性能。实验结果在viderface数据集上显示,在VGA图像上,我们的脸部探测器可以在几乎所有简单,介质和硬的子集中实现最先进的性能,超过更复杂的指定面检测器。代码可用于\ url {https://github.com/deepcam-cn/yolov5-face}
translated by 谷歌翻译
对象检测是计算机视觉中的重要下游任务。对于车载边缘计算平台,很难实现实时检测要求。而且,由大量可分开的卷积层建立的轻巧模型无法达到足够的精度。我们引入了一种新的轻质卷积技术GSCONV,以减轻模型,但保持准确性。 GSCONV在模型的准确性和速度之间取得了极好的权衡。而且,我们提供了一个设计范式,即纤细的颈部,以实现探测器的更高计算成本效益。在二十多组比较实验中,我们的方法的有效性得到了强有力的证明。特别是,通过我们的方法改善的检测器获得了最先进的结果(例如,与原件相比,在Tesla T4 GPU上以〜100fps的速度为70.9%MAP0.5。代码可从https://github.com/alanli1997/slim-neck-by-gsconv获得。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
最近已经设计了一些轻巧的卷积神经网络(CNN)模型,用于遥感对象检测(RSOD)。但是,他们中的大多数只是用可分离的卷积代替了香草卷积,这可能是由于很多精确损失而无法有效的,并且可能无法检测到方向的边界框(OBB)。同样,现有的OBB检测方法很难准确限制CNN预测的对象的形状。在本文中,我们提出了一个有效的面向轻质对象检测器(LO-DET)。具体而言,通道分离聚集(CSA)结构旨在简化可分开的卷积的复杂性,并开发了动态的接收场(DRF)机制,以通过自定义卷积内核及其感知范围来保持高精度,以保持高精度。网络复杂性。 CSA-DRF组件在保持高精度的同时优化了效率。然后,对角支撑约束头(DSC-Head)组件旨在检测OBB,并更准确,更稳定地限制其形状。公共数据集上的广泛实验表明,即使在嵌入式设备上,拟议的LO-DET也可以非常快地运行,具有检测方向对象的竞争精度。
translated by 谷歌翻译
Model efficiency has become increasingly important in computer vision. In this paper, we systematically study neural network architecture design choices for object detection and propose several key optimizations to improve efficiency. First, we propose a weighted bi-directional feature pyramid network (BiFPN), which allows easy and fast multiscale feature fusion; Second, we propose a compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time. Based on these optimizations and better backbones, we have developed a new family of object detectors, called EfficientDet, which consistently achieve much better efficiency than prior art across a wide spectrum of resource constraints. In particular, with singlemodel and single-scale, our EfficientDet-D7 achieves stateof-the-art 55.1 AP on COCO test-dev with 77M parameters and 410B FLOPs 1 , being 4x -9x smaller and using 13x -42x fewer FLOPs than previous detectors. Code is available at https://github.com/google/automl/tree/ master/efficientdet.
translated by 谷歌翻译
交通标志检测是无人驾驶系统的具有挑战性的任务,特别是对于检测多尺度目标和检测的实时问题。在交通标志检测过程中,目标的比例大大变化,这将对检测精度产生一定的影响。特征金字塔广泛用于解决这个问题,但它可能会破坏不同的交通标志尺度的功能一致性。此外,在实际应用中,常用方法难以提高多尺度交通标志的检测精度,同时确保实时检测。在本文中,我们提出了一种改进的特征金字塔模型,名为AF-FPN,它利用自适应注意模块(AAM)和特征增强模块(FEM)来减少特征映射生成过程中的信息损失,并提高表示能力特征金字塔。我们用AF-FPN替换了YOLOV5中的原始特征金字塔网络,这在确保实时检测的前提下提高了YOLOV5网络的多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集,提高模型的稳健性,使其更适合实际情况。关于清华腾讯100K(TT100K)数据集的广泛实验结果证明了与多种最先进的方法相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
为了实现不断增长的准确性,通常会开发大型和复杂的神经网络。这样的模型需要高度的计算资源,因此不能在边缘设备上部署。由于它们在几个应用领域的有用性,建立资源有效的通用网络非常感兴趣。在这项工作中,我们努力有效地结合了CNN和变压器模型的优势,并提出了一种新的有效混合体系结构。特别是在EDGENEXT中,我们引入了分裂深度转置注意力(SDTA)编码器,该编码器将输入张量分解为多个通道组,并利用深度旋转以及跨通道维度的自我注意力,以隐含地增加接受场并编码多尺度特征。我们在分类,检测和分割任务上进行的广泛实验揭示了所提出的方法的优点,优于相对较低的计算要求的最先进方法。我们具有130万参数的EDGENEXT模型在Imagenet-1k上达到71.2 \%TOP-1的精度,超过移动设备的绝对增益为2.2 \%,而拖鞋减少了28 \%。此外,我们具有560万参数的EDGENEXT模型在Imagenet-1k上达到了79.4 \%TOP-1的精度。代码和模型可在https://t.ly/_vu9上公开获得。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
压缩高准确性卷积神经网络(CNN)的最新进展已经见证了实时对象检测的显着进步。为了加速检测速度,轻质检测器总是使用单路主链几乎没有卷积层。但是,单路径架构涉及连续的合并和下采样操作,始终导致粗糙和不准确的特征图,这些图形不利,无法找到对象。另一方面,由于网络容量有限,最近的轻质网络在表示大规模的视觉数据方面通常很弱。为了解决这些问题,本文提出了一个名为DPNET的双路径网络,并采用了实时对象检测的轻巧注意方案。双路径体系结构使我们能够与提取物相对于高级语义特征和低级对象详细信息。尽管DPNET相对于单路检测器几乎具有重复的形状,但计算成本和模型大小并未显着增加。为了增强表示能力,轻巧的自相关模块(LSCM)旨在捕获全局交互,只有很少的计算开销和网络参数。在颈部,LSCM扩展到轻质互相关模块(LCCM),从而捕获相邻尺度特征之间的相互依赖性。我们已经对Coco和Pascal VOC 2007数据集进行了详尽的实验。实验结果表明,DPNET在检测准确性和实施效率之间实现了最新的权衡。具体而言,DPNET在MS COCO Test-DEV上可实现30.5%的AP,Pascal VOC 2007测试集上的81.5%地图,MWITH近250万型号,1.04 GFLOPS,1.04 GFLOPS和164 fps和196 fps和196 fps,320 x 320输入图像的320 x 320输入图像。
translated by 谷歌翻译
由于卷积在提取物体的局部上下文中,在过去十年中,对象检测在过去十年中取得了重大进展。但是,对象的尺度是多样的,当前卷积只能处理单尺度输入。因此,传统卷积具有固定接收场在处理这种规模差异问题方面的能力受到限制。多尺度功能表示已被证明是缓解规模差异问题的有效方法。最近的研究主要与某些量表或各个尺度的总体特征采用部分联系,并专注于整个量表的全球信息。但是,跨空间和深度维度的信息被忽略了。受此启发,我们提出了多尺度卷积(MSCONV)来解决此问题。同时考虑到量表,空间和深度信息,MSCONV能够更全面地处理多尺度输入。 MSCONV是有效的,并且在计算上是有效的,只有少量计算成本增加。对于大多数单阶段对象探测器,在检测头中用MSCONV代替传统的卷积可以带来AP的2.5 \%改进(在Coco 2017数据集上),只有3 \%的拖鞋增加了。 MSCONV对于两阶段对象探测器也具有灵活性和有效性。当扩展到主流两阶段对象检测器时,MSCONV的AP可以提高3.0 \%。我们在单尺度测试下的最佳模型在Coco 2017上实现了48.9 \%AP,\ textit {test-dev} Split,它超过了许多最新方法。
translated by 谷歌翻译
In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet-like / CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of "large neck, small head". We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results. In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios, i.e., DAMO-YOLO-Tiny/Small/Medium. They can achieve 43.0/46.8/50.0 mAPs on COCO with the latency of 2.78/3.83/5.62 ms on T4 GPUs respectively. The code is available at https://github.com/tinyvision/damo-yolo.
translated by 谷歌翻译
在传统的对象检测框架中,从图像识别模型继承的骨干体提取了深层特征,然后颈部模块融合了这些潜在特征,以在不同的尺度上捕获信息。由于对象检测的分辨率比图像识别大得多,因此骨干的计算成本通常主导了总推断成本。这种沉重的背部设计范式主要是由于历史遗产将图像识别模型传输到对象检测时,而不是端到端的优化设计以进行对象检测。在这项工作中,我们表明这种范式确实导致了亚最佳对象检测模型。为此,我们提出了一种新型的重颈范式,长颈鹿,这是一个类似长颈鹿的网络,用于有效的对象检测。长颈鹿使用极轻的骨干和非常深的颈部模块,可同时同时在不同的空间尺度以及不同级别的潜在语义之间进行密集的信息交换。该设计范式允许检测器即使在网络的早期阶段,也可以在相同的优先级处理高级语义信息和低级空间信息,从而使其在检测任务中更有效。对多个流行对象检测基准的数值评估表明,长颈鹿在广泛的资源约束中始终优于先前的SOTA模型。源代码可在https://github.com/jyqi/giraffedet上获得。
translated by 谷歌翻译
现代物体检测网络追求一般物体检测数据集的更高精度,同时计算负担也随着精度的提高而越来越多。然而,推理时间和精度对于需要是实时的对象检测系统至关重要。没有额外的计算成本,有必要研究精度改进。在这项工作中,提出了两种模块以提高零成本的检测精度,这是一般对象检测网络的FPN和检测头改进。我们采用规模注意机制,以有效地保险熔断多级功能映射,参数较少,称为SA-FPN模块。考虑到分类头和回归头的相关性,我们使用顺序头取代广泛使用的并联头部,称为SEQ-Head模块。为了评估有效性,我们将这两个模块应用于一些现代最先进的对象检测网络,包括基于锚和无锚。 Coco DataSet上的实验结果表明,具有两个模块的网络可以将原始网络超越1.1 AP和0.8 AP,分别为锚的锚和无锚网络的零成本。代码将在https://git.io/jtfgl提供。
translated by 谷歌翻译
无人驾驶飞机(UAV)的实时对象检测是一个具有挑战性的问题,因为Edge GPU设备作为物联网(IoT)节点的计算资源有限。为了解决这个问题,在本文中,我们提出了一种基于Yolox模型的新型轻型深度学习体系结构,用于Edge GPU上的实时对象检测。首先,我们设计了一个有效且轻巧的PixSF头,以更换Yolox的原始头部以更好地检测小物体,可以将其进一步嵌入深度可分离的卷积(DS Conv)中,以达到更轻的头。然后,开发为减少网络参数的颈层中的较小结构,这是精度和速度之间的权衡。此外,我们将注意模块嵌入头层中,以改善预测头的特征提取效果。同时,我们还改进了标签分配策略和损失功能,以减轻UAV数据集的类别不平衡和盒子优化问题。最后,提出了辅助头进行在线蒸馏,以提高PIXSF Head中嵌入位置嵌入和特征提取的能力。在NVIDIA Jetson NX和Jetson Nano GPU嵌入平台上,我们的轻质模型的性能得到了实验验证。扩展的实验表明,与目前的模型相比,Fasterx模型在Visdrone2021数据集中实现了更好的折衷和延迟之间的折衷。
translated by 谷歌翻译