我们提供了一种主动识别分布的小小的变化的方法,从而导致模型性能差异很大。为了确保这些转移是合理的,我们会以观察到的变量的因果机制的可解释变化来对其进行参数化。这定义了合理分布的参数鲁棒性集和相应的最坏情况损失。虽然可以通过重新加权技术(例如重要性抽样)来估算单个参数转移下的损失,但最终的最坏情况优化问题是非convex,并且估计值可能遭受较大的差异。但是,对于小移位,我们可以构建局部二阶近似值,以构建损失的损失,并提出找到最坏情况下的最差偏移作为特定的非凸二次二次优化问题,为此有效算法可用。我们证明,可以直接估计条件指数族模型中的移位,并且绑定了近似误差。我们将方法应用于计算机视觉任务(从图像中对性别进行分类),从而揭示了对非毒物属性转变的敏感性。
translated by 谷歌翻译
跨学科的一个重要问题是发现产生预期结果的干预措施。当可能的干预空间很大时,需要进行详尽的搜索,需要实验设计策略。在这种情况下,编码变量之间的因果关系以及因此对系统的影响,对于有效地确定理想的干预措施至关重要。我们开发了一种迭代因果方法来识别最佳干预措施,这是通过分布后平均值和所需目标平均值之间的差异来衡量的。我们制定了一种主动学习策略,该策略使用从不同干预措施中获得的样本来更新有关基本因果模型的信念,并确定对最佳干预措施最有用的样本,因此应在下一批中获得。该方法采用了因果模型的贝叶斯更新,并使用精心设计的,有因果关系的收购功能优先考虑干预措施。此采集函数以封闭形式进行评估,从而有效优化。理论上以信息理论界限和可证明的一致性结果在理论上基于理论上的算法。我们说明了综合数据和现实世界生物学数据的方法,即来自worturb-cite-seq实验的基因表达数据,以识别诱导特定细胞态过渡的最佳扰动;与几个基线相比,观察到所提出的因果方法可实现更好的样品效率。在这两种情况下,我们都认为因果知情的采集函数尤其优于现有标准,从而允许使用实验明显更少的最佳干预设计。
translated by 谷歌翻译
最近对DataSet Shift的兴趣,已经产生了许多方法,用于查找新的未经,无奈环境中预测的不变分布。然而,这些方法考虑不同类型的班次,并且已经在不同的框架下开发,从理论上难以分析解决方案如何与稳定性和准确性不同。采取因果图形视图,我们使用灵活的图形表示来表达各种类型的数据集班次。我们表明所有不变的分布对应于图形运算符的因果层次结构,该图形运算符禁用负责班次的图表中的边缘。层次结构提供了一个常见的理论基础,以便理解可以实现转移的何时以及如何实现稳定性,并且在稳定的分布可能不同的情况下。我们使用它来建立跨环境最佳性能的条件,并导出找到最佳稳定分布的新算法。使用这种新的视角,我们经验证明了最低限度和平均性能之间的权衡。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
因果效应估计对于自然和社会科学中的许多任务很重要。但是,如果没有做出强大的,通常无法测试的假设,就无法从观察数据中识别效果。我们考虑了部分识别问题的算法,当未衡量的混淆使鉴定不可能鉴定时,多变量,连续处理的界限治疗效果。我们考虑一个框架,即可观察的证据与基于规范标准在因果模型中编码的约束的含义相匹配。这纯粹是基于生成模型来概括经典方法。将因果关系施放为在受约束优化问题中的目标函数,我们将灵活的学习算法与蒙特卡洛方法相结合,以随机因果节目的名义实施解决方案家族。特别是,我们提出了可以通过因果或观察到的数据模型而没有可能性功能的参数功能的这种约束优化问题的方式,从而降低了任务的计算和统计复杂性。
translated by 谷歌翻译
仪器变量模型使我们能够确定协变量$ x $和响应$ y $之间的因果功能,即使在存在未观察到的混淆的情况下。大多数现有估计器都假定响应$ y $和隐藏混杂因素中的错误项与仪器$ z $不相关。这通常是由图形分离的动机,这一论点也证明了独立性。但是,提出独立限制会导致严格的可识别性结果。我们连接到计量经济学的现有文献,并提供了一种称为HSIC-X的实用方法,用于利用独立性,可以与任何基于梯度的学习程序结合使用。我们看到,即使在可识别的设置中,考虑到更高的矩可能会产生更好的有限样本结果。此外,我们利用独立性进行分布泛化。我们证明,只要这些移位足够强,拟议的估计器对于仪器的分布变化和最佳案例最佳变化是不变的。这些结果即使在未识别的情况下也能够得出这些结果,即仪器不足以识别因果功能。
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
度量的运输提供了一种用于建模复杂概率分布的多功能方法,并具有密度估计,贝叶斯推理,生成建模及其他方法的应用。单调三角传输地图$ \ unicode {x2014} $近似值$ \ unicode {x2013} $ rosenblatt(kr)重新安排$ \ unicode {x2014} $是这些任务的规范选择。然而,此类地图的表示和参数化对它们的一般性和表现力以及对从数据学习地图学习(例如,通过最大似然估计)出现的优化问题的属性产生了重大影响。我们提出了一个通用框架,用于通过平滑函数的可逆变换来表示单调三角图。我们建立了有关转化的条件,以使相关的无限维度最小化问题没有伪造的局部最小值,即所有局部最小值都是全球最小值。我们展示了满足某些尾巴条件的目标分布,唯一的全局最小化器与KR地图相对应。鉴于来自目标的样品,我们提出了一种自适应算法,该算法估计了基础KR映射的稀疏半参数近似。我们证明了如何将该框架应用于关节和条件密度估计,无可能的推断以及有向图形模型的结构学习,并在一系列样本量之间具有稳定的概括性能。
translated by 谷歌翻译
We provide results that exactly quantify how data augmentation affects the convergence rate and variance of estimates. They lead to some unexpected findings: Contrary to common intuition, data augmentation may increase rather than decrease the uncertainty of estimates, such as the empirical prediction risk. Our main theoretical tool is a limit theorem for functions of randomly transformed, high-dimensional random vectors. The proof draws on work in probability on noise stability of functions of many variables. The pathological behavior we identify is not a consequence of complex models, but can occur even in the simplest settings -- one of our examples is a ridge regressor with two parameters. On the other hand, our results also show that data augmentation can have real, quantifiable benefits.
translated by 谷歌翻译
尽管现代的大规模数据集通常由异质亚群(例如,多个人口统计组或多个文本语料库)组成 - 最小化平均损失的标准实践并不能保证所有亚人群中均匀的低损失。我们提出了一个凸面程序,该过程控制给定尺寸的所有亚群中最差的表现。我们的程序包括有限样本(非参数)收敛的保证,可以保证最坏的亚群。从经验上讲,我们观察到词汇相似性,葡萄酒质量和累犯预测任务,我们最糟糕的程序学习了对不看到看不见的亚人群的模型。
translated by 谷歌翻译
这是机器学习中(主要是)笔和纸练习的集合。练习在以下主题上:线性代数,优化,定向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和蒙特卡洛整合以及变异推断。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
translated by 谷歌翻译
在本文中,我们研究了在一组单位上进行的设计实验的问题,例如在线市场中的用户或用户组,以多个时间段,例如数周或数月。这些实验特别有助于研究对当前和未来结果具有因果影响的治疗(瞬时和滞后的影响)。设计问题涉及在实验之前或期间选择每个单元的治疗时间,以便最精确地估计瞬间和滞后的效果,实验后。这种治疗决策的优化可以通过降低其样本尺寸要求,直接最小化实验的机会成本。优化是我们提供近最优解的NP-Hard整数程序,当时在开始时进行设计决策(固定样本大小设计)。接下来,我们研究允许在实验期间进行适应性决策的顺序实验,并且还可能早期停止实验,进一步降低其成本。然而,这些实验的顺序性质使设计阶段和估计阶段复杂化。我们提出了一种新的算法,PGAE,通过自适应地制造治疗决策,估算治疗效果和绘制有效的实验后推理来解决这些挑战。 PGAE将来自贝叶斯统计,动态编程和样品分裂的思想结合起来。使用来自多个域的真实数据集的合成实验,我们证明了与基准相比,我们的固定样本尺寸和顺序实验的提出解决方案将实验的机会成本降低了50%和70%。
translated by 谷歌翻译