在本文中,我们评估了八种流行和开源的3D激光雷达和视觉大满贯(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像机和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现可以帮助人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。
translated by 谷歌翻译
We propose a framework for tightly-coupled lidar inertial odometry via smoothing and mapping, LIO-SAM, that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. LIO-SAM formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system. The estimated motion from inertial measurement unit (IMU) pre-integration de-skews point clouds and produces an initial guess for lidar odometry optimization. The obtained lidar odometry solution is used to estimate the bias of the IMU. To ensure high performance in real-time, we marginalize old lidar scans for pose optimization, rather than matching lidar scans to a global map. Scan-matching at a local scale instead of a global scale significantly improves the real-time performance of the system, as does the selective introduction of keyframes, and an efficient sliding window approach that registers a new keyframe to a fixed-size set of prior "sub-keyframes." The proposed method is extensively evaluated on datasets gathered from three platforms over various scales and environments.
translated by 谷歌翻译
农业行业不断寻求农业生产中涉及的不同过程的自动化,例如播种,收获和杂草控制。使用移动自主机器人执行这些任务引起了极大的兴趣。耕地面向同时定位和映射(SLAM)系统(移动机器人技术的关键)面临着艰巨的挑战,这是由于视觉上的难度,这是由于高度重复的场景而引起的。近年来,已经开发了几种视觉惯性遗传(VIO)和SLAM系统。事实证明,它们在室内和室外城市环境中具有很高的准确性。但是,在农业领域未正确评估它们。在这项工作中,我们从可耕地上的准确性和处理时间方面评估了最相关的最新VIO系统,以便更好地了解它们在这些环境中的行为。特别是,该评估是在我们的车轮机器人记录的大豆领域记录的传感器数据集中进行的,该田间被公开发行为Rosario数据集。评估表明,环境的高度重复性外观,崎terrain的地形产生的强振动以及由风引起的叶子的运动,暴露了当前最新的VIO和SLAM系统的局限性。我们分析了系统故障并突出观察到的缺点,包括初始化故障,跟踪损失和对IMU饱和的敏感性。最后,我们得出的结论是,即使某些系统(例如Orb-Slam3和S-MSCKF)在其他系统方面表现出良好的结果,但应采取更多改进,以使其在某些申请中的农业领域可靠,例如作物行的土壤耕作和农药喷涂。 。
translated by 谷歌翻译
本文介绍了在线本地化和彩色网格重建(OLCMR)ROS感知体系结构,用于地面探索机器人,旨在在具有挑战性的未知环境中执行强大的同时定位和映射(SLAM),并实时提供相关的彩色3D网格表示。它旨在被远程人类操作员使用在任务或之后或之后轻松地可视化映射的环境,或作为在勘探机器人技术领域进行进一步研究的开发基础。该体系结构主要由精心挑选的基于激光雷达的SLAM算法的开源ROS实现以及使用点云和RGB摄像机图像投影到3D空间中的彩色表面重建过程。在较新的大学手持式LIDAR-VISION参考数据集上评估了整体表演,并在分别在城市和乡村户外环境中分别在代表性的车轮机器人上收集的两个实验轨迹。索引术语:现场机器人,映射,猛击,彩色表面重建
translated by 谷歌翻译
With the advanced request to employ a team of robots to perform a task collaboratively, the research community has become increasingly interested in collaborative simultaneous localization and mapping. Unfortunately, existing datasets are limited in the scale and variation of the collaborative trajectories, even though generalization between inter-trajectories among different agents is crucial to the overall viability of collaborative tasks. To help align the research community's contributions with realistic multiagent ordinated SLAM problems, we propose S3E, a large-scale multimodal dataset captured by a fleet of unmanned ground vehicles along four designed collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor sequences that each exceed 200 seconds, consisting of well temporal synchronized and spatial calibrated high-frequency IMU, high-quality stereo camera, and 360 degree LiDAR data. Crucially, our effort exceeds previous attempts regarding dataset size, scene variability, and complexity. It has 4x as much average recording time as the pioneering EuRoC dataset. We also provide careful dataset analysis as well as baselines for collaborative SLAM and single counterparts. Data and more up-to-date details are found at https://github.com/PengYu-Team/S3E.
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
同时定位和映射(SLAM)对于自主机器人(例如自动驾驶汽车,自动无人机),3D映射系统和AR/VR应用至关重要。这项工作提出了一个新颖的LIDAR惯性 - 视觉融合框架,称为R $^3 $ LIVE ++,以实现强大而准确的状态估计,同时可以随时重建光线体图。 R $^3 $ LIVE ++由LIDAR惯性探针(LIO)和视觉惯性探测器(VIO)组成,均为实时运行。 LIO子系统利用从激光雷达的测量值重建几何结构(即3D点的位置),而VIO子系统同时从输入图像中同时恢复了几何结构的辐射信息。 r $^3 $ live ++是基于r $^3 $ live开发的,并通过考虑相机光度校准(例如,非线性响应功能和镜头渐滴)和相机的在线估计,进一步提高了本地化和映射的准确性和映射接触时间。我们对公共和私人数据集进行了更广泛的实验,以将我们提出的系统与其他最先进的SLAM系统进行比较。定量和定性结果表明,我们所提出的系统在准确性和鲁棒性方面对其他系统具有显着改善。此外,为了证明我们的工作的可扩展性,{我们基于重建的辐射图开发了多个应用程序,例如高动态范围(HDR)成像,虚拟环境探索和3D视频游戏。}最后,分享我们的发现和我们的发现和为社区做出贡献,我们在GitHub上公开提供代码,硬件设计和数据集:github.com/hku-mars/r3live
translated by 谷歌翻译
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challenging environments and interoperability of heterogeneous multi-robot systems with varying sensor setups. With maplab 2.0, we provide a versatile open-source platform that facilitates developing, testing, and integrating new modules and features into a fully-fledged SLAM system. Through extensive experiments, we show that maplab 2.0's accuracy is comparable to the state-of-the-art on the HILTI 2021 benchmark. Additionally, we showcase the flexibility of our system with three use cases: i) large-scale (approx. 10 km) multi-robot multi-session (23 missions) mapping, ii) integration of non-visual landmarks, and iii) incorporating a semantic object-based loop closure module into the mapping framework. The code is available open-source at https://github.com/ethz-asl/maplab.
translated by 谷歌翻译
组合多个传感器使机器人能够最大程度地提高其对环境的感知意识,并增强其对外部干扰的鲁棒性,对机器人导航至关重要。本文提出了可融合的基准测试,这是一个完整的多传感器数据集,具有多种移动机器人序列。本文提出了三项贡献。我们首先推进便携式和通用的多传感器套件,可提供丰富的感官测量值:10Hz激光镜点云,20Hz立体声框架图像,来自立体声事件相机的高速率和异步事件,来自IMU的200Hz惯性读数以及10Hz GPS信号。传感器已经在硬件中暂时同步。该设备轻巧,独立,并为移动机器人提供插件支持。其次,我们通过收集17个序列来构建数据集,该序列通过利用多个机器人平台进行数据收集来涵盖校园上各种环境。一些序列对现有的SLAM算法具有挑战性。第三,我们为将本地化和映射绩效评估提供了基础真理。我们还评估最新的大满贯方法并确定其局限性。该数据集将发布由原始传感器的设置,地面真相,校准数据和评估算法组成:https://ram-lab.com/file/site/site/multi-sensor-dataset。
translated by 谷歌翻译
在过去的几年中,同时定位和映射(SLAM)的研究取得了出色的进步。如今,SLAM系统正在从学术到现实世界的应用过渡。但是,这种过渡在准确性和鲁棒性方面提出了新的挑战。为了开发可以解决这些挑战的新的SLAM系统,需要新的包含尖端硬件和现实情况的数据集。我们提出了HILTI SLAM挑战数据集。我们的数据集包含室内序列,实验室,建筑环境以及建筑工地和停车区的室外序列。所有这些序列的特征是无特征区域和不同的照明条件,这些条件在现实世界中典型,并对在密封实验室环境中开发的算法构成了巨大的挑战。每个序列都提供了准确的稀疏地面真相,以毫米水平为毫米。用于记录数据的传感器平台包括许多视觉,激光雷达和惯性传感器,它们在空间和时间上进行了校准。该数据集的目的是促进传感器融合的研究,以开发可以在需要高准确性和鲁棒性(例如在施工环境中)部署的SLAM算法。许多学术和工业团体在HILTI SLAM挑战中的拟议数据集上测试了他们的SLAM系统。本文总结的挑战结果表明,拟议的数据集是准备在现实世界中部署的新SLAM算法开发的重要资产。
translated by 谷歌翻译
在本文中,我们介绍了一个大型数据集,其中包含各种移动映射传感器,该传感器使用以典型的步行速度携带的手持设备收集了近2.2公里,该设备通过牛津大学的新学院近2.2公里。该数据集包括来自两个市售设备的数据 - 立体惯性摄像头和一个多光束3D激光雷达,该镜头还提供惯性测量。此外,我们使用了三脚架安装的调查级LIDAR扫描仪来捕获测试位置的详细毫米准确的3D地图(包含$ \ sim $ \ sim $ 2.9亿点)。使用地图,我们推断出每次雷达扫描的设备位置的6度自由度(DOF)地面真理,以更好地评估LIDAR和视觉定位,映射和重建系统。这个基础真理是该数据集的特殊新颖贡献,我们认为它将实现许多类似数据集缺乏的系统评估。数据集结合了建筑环境,开放空间和植被区域,以测试本地化和映射系统,例如基于视觉的导航,视觉和激光雷达大满贯,3D激光雷达重建以及基于外观的位置识别。该数据集可在以下网址获得:ori.ox.ac.uk/datasets/newer-college-dataset
translated by 谷歌翻译
我们介绍了DLR行星立体声,固态激光雷达,惯性(S3LI)数据集,记录在埃特纳山上,西西里山(Sicily),一种类似于月球和火星的环境,使用手持式传感器套件,适用于适用于空间上的属性 - 像移动漫游器。环境的特征是关于视觉和结构外观的具有挑战性的条件:严重的视觉混叠,对视觉大满贯系统执行位置识别的能力构成了重大限制,而缺乏出色的结构细节,与有​​限的视野相连在利用的固态激光雷达传感器中,仅使用点云就挑战了传统的激光雷达大满贯。借助此数据,涵盖了在软火山斜坡上超过4公里的旅行,我们的目标是:1)提供一种工具来揭示有关环境的最先进的大满贯系统的限制,而环境并未广泛存在可用的数据集和2)激励开发新颖的本地化和映射方法,这些方法有效地依赖于两个传感器的互补功能。数据集可在以下URL上访问:https://rmc.dlr.de/s3li_dataset
translated by 谷歌翻译
Simultaneous localization and mapping (SLAM) is one of the key components of a control system that aims to ensure autonomous navigation of a mobile robot in unknown environments. In a variety of practical cases a robot might need to travel long distances in order to accomplish its mission. This requires long-term work of SLAM methods and building large maps. Consequently the computational burden (including high memory consumption for map storage) becomes a bottleneck. Indeed, state-of-the-art SLAM algorithms include specific techniques and optimizations to tackle this challenge, still their performance in long-term scenarios needs proper assessment. To this end, we perform an empirical evaluation of two widespread state-of-the-art RGB-D SLAM methods, suitable for long-term navigation, i.e. RTAB-Map and Voxgraph. We evaluate them in a large simulated indoor environment, consisting of corridors and halls, while varying the odometer noise for a more realistic setup. We provide both qualitative and quantitative analysis of both methods uncovering their strengths and weaknesses. We find that both methods build a high-quality map with low odometry noise but tend to fail with high odometry noise. Voxgraph has lower relative trajectory estimation error and memory consumption than RTAB-Map, while its absolute error is higher.
translated by 谷歌翻译
We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements.The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
在未知和大规模的地下环境中,与一组异质的移动机器人团队进行搜救,需要高精度的本地化和映射。在复杂和感知衰落的地下环境中,这一至关重要的需求面临许多挑战,因为在船上感知系统需要在非警官条件下运作(由于黑暗和灰尘,坚固而泥泞的地形以及自我的存在以及自我的存在,都需要运作。 - 类似和模棱两可的场景)。在灾难响应方案和缺乏有关环境的先前信息的情况下,机器人必须依靠嘈杂的传感器数据并执行同时定位和映射(SLAM)来构建环境的3D地图,并定位自己和潜在的幸存者。为此,本文报告了Team Costar在DARPA Subterranean Challenge的背景下开发的多机器人大满贯系统。我们通过合并一个可适应不同的探针源和激光镜配置的单机器人前端界面来扩展以前的工作,即LAMP,这是一种可伸缩的多机前端,以支持大型大型和内部旋转循环闭合检测检测规模环境和多机器人团队,以及基于渐变的非凸度的稳健后端,配备了异常弹性姿势图优化。我们提供了有关多机器人前端和后端的详细消融研究,并评估美国跨矿山,发电厂和洞穴收集的挑战现实世界中的整体系统性能。我们还发布了我们的多机器人后端数据集(以及相应的地面真相),可以作为大规模地下大满贯的具有挑战性的基准。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
对自主导航和室内应用程序勘探机器人的最新兴趣刺激了对室内同时定位和映射(SLAM)机器人系统的研究。尽管大多数这些大满贯系统使用视觉和激光雷达传感器与探针传感器同时使用,但这些探针传感器会随着时间的流逝而漂移。为了打击这种漂移,视觉大满贯系统部署计算和内存密集型搜索算法来检测“环闭合”,这使得轨迹估计在全球范围内保持一致。为了绕过这些资源(计算和内存)密集算法,我们提出了VIWID,该算法将WiFi和视觉传感器集成在双层系统中。这种双层方法将局部和全局轨迹估计的任务分开,从而使VIWID资源有效,同时实现PAR或更好的性能到最先进的视觉大满贯。我们在四个数据集上展示了VIWID的性能,涵盖了超过1500 m的遍历路径,并分别显示出4.3倍和4倍的计算和记忆消耗量与最先进的视觉和LIDAR SLAM SLAM系统相比,具有PAR SLAM性能。
translated by 谷歌翻译
同时本地化和映射(SLAM)正在现实世界应用中部署,但是在许多常见情况下,许多最先进的解决方案仍然在困难。进步的SLAM研究的关键是高质量数据集的可用性以及公平透明的基准测试。为此,我们创建了Hilti-Oxford数据集,以将最新的SLAM系统推向其极限。该数据集面临着各种挑战,从稀疏和常规的建筑工地到17世纪的新古典建筑,并具有细节和弯曲的表面。为了鼓励多模式的大满贯方法,我们设计了一个具有激光雷达,五个相机和IMU(惯性测量单元)的数据收集平台。为了对精度和鲁棒性至关重要的任务进行基准测试量算法,我们实施了一种新颖的地面真相收集方法,使我们的数据集能够以毫米精度准确地测量SLAM姿势错误。为了进一步确保准确性,我们平台的外部设备通过微米精确的扫描仪进行了验证,并使用硬件时间同步在线管理时间校准。我们数据集的多模式和多样性吸引了大量的学术和工业研究人员进入第二版《希尔蒂·斯拉姆挑战赛》,该挑战于2022年6月结束。挑战的结果表明,尽管前三名团队可以实现准确性在某些序列中的2厘米或更高的速度中,性能以更困难的序列下降。
translated by 谷歌翻译
我们提出了一种准确而坚固的多模态传感器融合框架,Metroloc,朝着最极端的场景之一,大规模地铁车辆本地化和映射。 Metroloc在以IMU为中心的状态估计器上构建,以较轻耦合的方法紧密地耦合光检测和测距(LIDAR),视觉和惯性信息。所提出的框架由三个子模块组成:IMU Odometry,LiDar - 惯性内径术(LIO)和视觉惯性内径(VIO)。 IMU被视为主要传感器,从LIO和VIO实现了从LIO和VIO的观察,以限制加速度计和陀螺仪偏差。与以前的点LIO方法相比,我们的方法通过将线路和平面特征引入运动估计来利用更多几何信息。 VIO还通过使用两条线和点来利用环境结构信息。我们所提出的方法在具有维护车辆的长期地铁环境中广泛测试。实验结果表明,该系统比使用实时性能的最先进的方法更准确和强大。此外,我们开发了一系列虚拟现实(VR)应用,以实现高效,经济,互动的轨道车辆状态和轨道基础设施监控,已经部署到室外测试铁路。
translated by 谷歌翻译