为了协助游戏开发人员制作游戏NPC,我们展示了EvolvingBehavior,这是一种新颖的工具,用于基因编程,以在不真实的引擎4中发展行为树4.在初步评估中,我们将演变的行为与我们的研究人员设计的手工制作的树木和随机的树木进行了比较 - 在3D生存游戏中种植的树木。我们发现,在这种情况下,EvolvingBehavior能够产生行为,以实现设计师的目标。最后,我们讨论了共同创造游戏AI设计工具的探索的含义和未来途径,以及行为树进化的挑战和困难。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
4月20日至22日,在马德里(西班牙)举行的EVO* 2022会议上提交了末期摘要。这些论文介绍了正在进行的研究和初步结果,这些结果研究了对不同问题的不同方法(主要是进化计算)的应用,其中大多数是现实世界中的方法。
translated by 谷歌翻译
人工智能,当与游戏进行合并时,使研究和推进领域的理想结构。多种代理游戏对每个代理具有多个控件,同时增加搜索复杂性的同时生成大量数据。因此,我们需要高级搜索方法来查找解决方案并创建人工智能代理。在本文中,我们提出了我们的小说进化蒙特卡罗树搜索(FEMCTS)代理商,借用从进化的Algorthims(EA)和Monte Carlo树搜索(MCT)的想法来玩Pommerman的比赛。它优于滚动地平线进化算法(Rhea)在高可观察性环境中显着,几乎和MCTS用于大多数游戏种子,在某些情况下表现优于它。
translated by 谷歌翻译
自动适应玩家的游戏内容打开新的游戏开发门。在本文中,我们提出了一种使用人物代理和经验指标的架构,这使得能够在进行针对特定玩家人物的程序生成的水平。使用我们的游戏“Grave Rave”,我们证明了这种方法成功地适应了三个不同的三种不同体验指标的基于法则的角色代理。此外,该适应性被证明是特定的,这意味着水平是人的意识,而不仅仅是关于所选度量的一般优化。
translated by 谷歌翻译
本文介绍了一种全自动的机械照明方法,以实现一般视频游戏水平的生成。使用受约束的MAP-ELITE算法和GVG-AI框架,该系统生成了最简单的基于图块的级别,该级别包含特定的游戏机制集并满足可玩性约束。我们将这种方法应用于GVG-AI的$ 4 $不同游戏的机械空间:Zelda,Solarfox,Plants和eartortals。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
本文探讨了培训来生成代码的大型语言模型(LLMS)可以极大地提高对基因编程(GP)应用程序的突变操作员的有效性。由于此类LLM受益于包括顺序更改和修改的训练数据,因此它们可以近似人类会做出的可能变化。为了强调通过大型模型(ELM)的这种进化的含义的广度,在主要实验ELM与MAP-ELITE结合产生了数十万个Python程序的功能示例,这些示例在Sodarace域中输出了在Sodarace域中运行AMBULE的机器人,原始LLM从未在预训练中见过。然后,这些示例有助于引导培训一种新的条件语言模型,该模型可以为特定地形输出合适的步行者。引导新模型可以在以前可用的零培训数据中为给定上下文中输出适当的工件的新模型具有对开放性,深度学习和增强学习的影响。在这里深入探讨了这些含义,以期激发榆树现在打开的新研究方向。
translated by 谷歌翻译
在生存的背景下,可以单独繁殖在我们的机器中产生智力吗?在这项工作中,自我复制是在现代学习环境中出现智能行为的一种机制。通过纯粹专注于生存,在进行自然选择的同时,进化的生物被证明会产生有意义的,复杂和聪明的行为,从而在没有任何奖励或目标概念的情况下向挑战性问题展示了创造性的解决方案。Atari和机器人学习环境是根据自然选择重新定义的,在这些实验过程中自我复制生物中出现的行为进行了详细描述。
translated by 谷歌翻译
Real-Time Strategy (RTS) game unit generation is an unexplored area of Procedural Content Generation (PCG) research, which leaves the question of how to automatically generate interesting and balanced units unanswered. Creating unique and balanced units can be a difficult task when designing an RTS game, even for humans. Having an automated method of designing units could help developers speed up the creation process as well as find new ideas. In this work we propose a method of generating balanced and useful RTS units. We draw on Search-Based PCG and a fitness function based on Monte Carlo Tree Search (MCTS). We present ten units generated by our system designed to be used in the game microRTS, as well as results demonstrating that these units are unique, useful, and balanced.
translated by 谷歌翻译
自主机器人结合了各种技能,形成越来越复杂的行为,称为任务。尽管这些技能通常以相对较低的抽象级别进行编程,但它们的协调是建筑分离的,并且经常以高级语言或框架表达。几十年来,州机器一直是首选的语言,但是最近,行为树的语言在机器人主义者中引起了人们的关注。行为树最初是为计算机游戏设计的,用于建模自主参与者,提供了基于树木的可扩展的使命表示,并受到支持支持模块化设计和代码的重复使用。但是,尽管使用了该语言的几种实现,但对现实世界中的用法和范围知之甚少。行为树提供的概念与传统语言(例如州机器)有何关系?应用程序中如何使用行为树和状态机概念?我们介绍了对行为树中关键语言概念的研究及其在现实世界机器人应用中的使用。我们识别行为树语言,并将其语义与机器人技术中最著名的行为建模语言进行比较。我们为使用这些语言的机器人应用程序挖掘开源存储库并分析此用法。我们发现两种行为建模语言在语言设计及其在开源项目中的用法之间的相似性方面,以满足机器人域的需求。我们为现实世界行为模型的数据集提供了贡献,希望激发社区使用和进一步开发这种语言,相关的工具和分析技术。
translated by 谷歌翻译
事实证明,在学习环境中,社会智能代理(SIA)的部署在不同的应用领域具有多个优势。社会代理创作工具使场景设计师能够创造出对SIAS行为的高度控制的量身定制体验,但是,另一方面,这是有代价的,因为该方案及其创作的复杂性可能变得霸道。在本文中,我们介绍了可解释的社会代理创作工具的概念,目的是分析社会代理的创作工具是否可以理解和解释。为此,我们检查了创作工具Fatima-Toolkit是否可以理解,并且从作者的角度来看,其创作步骤可以解释。我们进行了两项用户研究,以定量评估Fatima-Toolkit的解释性,可理解性和透明度,从场景设计师的角度来看。关键发现之一是,法蒂玛 - 库尔基特(Fatima-Toolkit)的概念模型通常是可以理解的,但是基于情感的概念并不那么容易理解和使用。尽管关于Fatima-Toolkit的解释性有一些积极的方面,但仍需要取得进展,以实现完全可以解释的社会代理商创作工具。我们提供一组关键概念和可能的解决方案,可以指导开发人员构建此类工具。
translated by 谷歌翻译
蒙特卡洛树搜索(MCTS)是一种搜索最佳决策的最佳先入点方法。 MCT的成功在很大程度上取决于树木的建造方式,并且选择过程在其中起着基本作用。被证明是可靠的一种特殊选择机制是基于树木(UCT)的上限置信度范围。 UCT试图通过考虑存储在MCT的统计树中的值来平衡探索和剥削。但是,对MCTS UCT的一些调整对于这是必要的。在这项工作中,我们使用进化算法(EAS)以替代UCT公式并在MCT中使用进化的表达式来进化数学表达式。更具体地说,我们通过在MCTS方法(SIEA-MCT)中提出的语义启发的进化算法来发展表达式。这是受遗传编程(GP)语义的启发,其中使用健身案例被视为在GP中采用的要求。健身病例通常用于确定个体的适应性,可用于计算个体的语义相似性(或差异)。但是,MCT中没有健身案例。我们通过使用MCT的多个奖励值来扩展此概念,从而使我们能够确定个人及其语义的适应性。通过这样做,我们展示了SIEA-MCT如何能够成功地发展数学表达式,而数学表达式与UCT相比,无需调整这些演变的表达式而产生更好或竞争的结果。我们比较了提出的SIEA-MCT与MCTS算法,MCTS快速动作值估计算法的性能, *-minimax家族的三种变体,一个随机控制器和另外两种EA方法。我们始终展示SIEA-MCT在挑战性的Carcassonne游戏中如何优于大多数这些智能控制者。
translated by 谷歌翻译
聚类算法的全面基准是困难的两个关键因素:(i)〜这种无监督的学习方法的独特数学定义和(ii)〜某些聚类算法采用的生成模型或群集标准之间的依赖性的依赖性内部集群验证。因此,对严格基准测试的最佳做法没有达成共识,以及是否有可能在给定申请的背景之外。在这里,我们认为合成数据集必须继续在群集算法的评估中发挥重要作用,但这需要构建适当地涵盖影响聚类算法性能的各种属性集的基准。通过我们的框架,我们展示了重要的角色进化算法,以支持灵活的这种基准,允许简单的修改和扩展。我们说明了我们框架的两种可能用途:(i)〜基准数据的演变与一组手派生属性和(ii)〜生成梳理给定对算法之间的性能差异的数据集。我们的作品对设计集群基准的设计具有足够挑战广泛算法的集群基准,并进一步了解特定方法的优势和弱点。
translated by 谷歌翻译
2048 is a single-player stochastic puzzle game. This intriguing and addictive game has been popular worldwide and has attracted researchers to develop game-playing programs. Due to its simplicity and complexity, 2048 has become an interesting and challenging platform for evaluating the effectiveness of machine learning methods. This dissertation conducts comprehensive research on reinforcement learning and computer game algorithms for 2048. First, this dissertation proposes optimistic temporal difference learning, which significantly improves the quality of learning by employing optimistic initialization to encourage exploration for 2048. Furthermore, based on this approach, a state-of-the-art program for 2048 is developed, which achieves the highest performance among all learning-based programs, namely an average score of 625377 points and a rate of 72% for reaching 32768-tiles. Second, this dissertation investigates several techniques related to 2048, including the n-tuple network ensemble learning, Monte Carlo tree search, and deep reinforcement learning. These techniques are promising for further improving the performance of the current state-of-the-art program. Finally, this dissertation discusses pedagogical applications related to 2048 by proposing course designs and summarizing the teaching experience. The proposed course designs use 2048-like games as materials for beginners to learn reinforcement learning and computer game algorithms. The courses have been successfully applied to graduate-level students and received well by student feedback.
translated by 谷歌翻译
背景:机器学习(ML)可以实现有效的自动测试生成。目的:我们表征了新兴研究,检查测试实践,研究人员目标,应用的ML技术,评估和挑战。方法:我们对97个出版物的样本进行系统文献综述。结果:ML生成系统,GUI,单位,性能和组合测试的输入或改善现有生成方法的性能。 ML还用于生成测试判决,基于属性的和预期的输出序列。经常基于神经网络和强化学习的监督学习通常是基于Q学习的 - 很普遍,并且某些出版物还采用了无监督或半监督的学习。使用传统的测试指标和与ML相关的指标(例如准确性)评估(半/非 - )监督方法,而经常使用与奖励功能相关的测试指标来评估强化学习。结论:工作到尽头表现出巨大的希望,但是在培训数据,再探术,可伸缩性,评估复杂性,所采用的ML算法以及如何应用 - 基准和可复制性方面存在公开挑战。我们的发现可以作为该领域研究人员的路线图和灵感。
translated by 谷歌翻译
The highest grossing media franchise of all times, with over \$90 billion in total revenue, is Pokemon. The video games belong to the class of Japanese Role Playing Games (J-RPG). Developing a powerful AI agent for these games is very hard because they present big challenges to MinMax, Monte Carlo Tree Search and statistical Machine Learning, as they are vastly different from the well explored in AI literature games. An AI agent for one of these games means significant progress in AI agents for the entire class. Further, the key principles of such work can hopefully inspire approaches to several domains that require excellent teamwork under conditions of extreme uncertainty, including managing a team of doctors, robots or employees in an ever changing environment, like a pandemic stricken region or a war-zone. In this paper we first explain the mechanics of the game and we perform a game analysis. We continue by proposing unique AI algorithms based on our understanding that the two biggest challenges in the game are keeping a balanced team and dealing with three sources of uncertainty. Later on, we describe why evaluating the performance of such agents is challenging and we present the results of our approach. Our AI agent performed significantly better than all previous attempts and peaked at the 33rd place in the world, in one of the most popular battle formats, while running on only 4 single socket servers.
translated by 谷歌翻译