贝叶斯优化已被证明是优化昂贵至尊评估系统的有效方法。然而,根据单一观察的成本,一个或多个目标的多维优化可能仍然是昂贵的。多保真优化通过包括多个更便宜的信息来源,例如数值模拟中的低分辨率近似来解决这个问题。用于多保真优化的采集功能通常基于勘探重算法,这些算法难以与多种目标的优化结合。在这里,我们认为预期的超越改善政策可以在许多情况下作为合适的替代品起作用。我们通过两步评估或在单个采集函数内纳入评估成本,额外的保真相关目标。这允许同时多目标和多保真优化,这允许以分数成本准确地建立帕累托集和前部。基准显示成本降低了一个数量级或更多的顺序。因此,我们的方法允许极其膨胀的黑盒功能进行静态优化。在现有的优化贝叶斯优化框架中实现了本方法简单且直接,可以立即扩展到批量优化。该技术还可用于组合不同的连续和/或离散保真度尺寸,这使得它们特别相关地与等离子体物理,流体动力学和许多科学计算分支中的模拟问题相关。
translated by 谷歌翻译
Beam parameter optimization in accelerators involves multiple, sometimes competing objectives. Condensing these individual objectives into a single figure of merit unavoidably results in a bias towards particular outcomes, in absence of prior knowledge often in a non-desired way. Finding an optimal objective definition then requires operators to iterate over many possible objective weights and definitions, a process that can take many times longer than the optimization itself. A more versatile approach is multi-objective optimization, which establishes the trade-off curve or Pareto front between objectives. Here we present the first results on multi-objective Bayesian optimization of a simulated laser-plasma accelerator. We find that multi-objective optimization reaches comparable performance to its single-objective counterparts while allowing for instant evaluation of entirely new objectives. This dramatically reduces the time required to find appropriate objective definitions for new problems. Additionally, our multi-objective, multi-fidelity method reduces the time required for an optimization run by an order of magnitude. It does so by dynamically choosing simulation resolution and box size, requiring fewer slow and expensive simulations as it learns about the Pareto-optimal solutions from fast low-resolution runs. The techniques demonstrated in this paper can easily be translated into many different computational and experimental use cases beyond accelerator optimization.
translated by 谷歌翻译
我们考虑使用昂贵的功能评估(也称为实验)的黑匣子多目标优化(MOO)的问题,其中目标是通过最小化实验的总资源成本来近似真正的帕累托解决方案。例如,在硬件设计优化中,我们需要使用昂贵的计算模拟找到权衡性能,能量和面积开销的设计。关键挑战是选择使用最小资源揭示高质量解决方案的实验顺序。在本文中,我们提出了一种基于输出空间熵(OSE)搜索原理来解决MOO问题的一般框架:选择最大化每单位资源成本的信息的实验,这是真正的帕累托前线所获得的信息。我们适当地实例化了OSE搜索的原理,以导出以下四个Moo问题设置的高效算法:1)最基本的EM单一保真设置,实验昂贵且准确; 2)处理EM黑匣子约束}在不执行实验的情况下无法进行评估; 3)离散的多保真设置,实验可以在消耗的资源量和评估准确度时变化; 4)EM连续保真设置,其中连续函数近似导致巨大的实验空间。不同综合和现实世界基准测试的实验表明,基于OSE搜索的算法在既有计算效率和MOO解决方案的准确性方面改进了最先进的方法。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
本文重点介绍了具有高输出方差的随机模拟器的多目标优化,其中输入空间是有限的,并且目标函数的评估昂贵。我们依靠贝叶斯优化算法,这些算法使用概率模型来对要优化的功能进行预测。所提出的方法是用于估计帕累托最佳溶液的帕累托主动学习(PAL)算法的扩展,该算法使其适合随机环境。我们将其命名为随机模拟器(PAL)的Pareto主动学习。通过数值实验对一组双维,双目标测试问题进行数值实验评估了PAL的表现。与其他基于标量的和随机搜索的方法相比,PAL表现出卓越的性能。
translated by 谷歌翻译
贝叶斯优化提供了一种优化昂贵黑匣子功能的有效方法。它最近已应用于流体动力学问题。本文研究并在一系列合成测试函数上从经验上比较了常见的贝叶斯优化算法。它研究了采集函数和训练样本数量的选择,采集功能的精确计算以及基于蒙特卡洛的方法以及单点和多点优化。该测试功能被认为涵盖了各种各样的挑战,因此是理想的测试床,以了解贝叶斯优化的性能,并确定贝叶斯优化表现良好和差的一般情况。这些知识可以用于应用程序中,包括流体动力学的知识,这些知识是未知的。这项调查的结果表明,要做出的选择与相对简单的功能不相关,而乐观的采集功能(例如上限限制)应首选更复杂的目标函数。此外,蒙特卡洛方法的结果与分析采集函数的结果相当。在目标函数允许并行评估的情况下,多点方法提供了更快的替代方法,但它可能需要进行更多的客观函数评估。
translated by 谷歌翻译
Bayesian Optimization(BO)是全球优化的黑匣子客观功能的方法,这是昂贵的评估。 Bo Powered实验设计在材料科学,化学,实验物理,药物开发等方面发现了广泛的应用。这项工作旨在提请注意应用BO在设计实验中的益处,并提供博手册,涵盖方法和软件,为了方便任何想要申请或学习博的人。特别是,我们简要解释了BO技术,审查BO中的所有应用程序在添加剂制造中,比较和举例说明不同开放BO库的功能,解锁BO的新潜在应用,以外的数据(例如,优先输出)。本文针对读者,了解贝叶斯方法的一些理解,但不一定符合添加剂制造的知识;软件性能概述和实施说明是任何实验设计从业者的乐器。此外,我们在添加剂制造领域的审查突出了博的目前的知识和技术趋势。本文在线拥有补充材料。
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
贝叶斯优化是黑匣子功能优化的流行框架。多重方法方法可以通过利用昂贵目标功能的低保真表示来加速贝叶斯优化。流行的多重贝叶斯策略依赖于采样政策,这些策略解释了在特定意见下评估目标函数的立即奖励,从而排除了更多的信息收益,这些收益可能会获得更多的步骤。本文提出了一个非侧重多倍数贝叶斯框架,以掌握优化的未来步骤的长期奖励。我们的计算策略具有两步的lookahead多因素采集函数,可最大程度地提高累积奖励,从而测量解决方案的改进,超过了前面的两个步骤。我们证明,所提出的算法在流行的基准优化问题上优于标准的多尺寸贝叶斯框架。
translated by 谷歌翻译
信息理论的贝叶斯优化技术因其非洋流品质而变得越来越流行,以优化昂贵的黑盒功能。熵搜索和预测性熵搜索都考虑了输入空间中最佳的熵,而最新的最大值熵搜索则考虑了输出空间中最佳值的熵。我们提出了联合熵搜索(JES),这是一种新的信息理论采集函数,它考虑了全新的数量,即输入和输出空间上关节最佳概率密度的熵。为了结合此信息,我们考虑从幻想的最佳输入/输出对条件下的熵减少。最终的方法主要依赖于标准的GP机械,并去除通常与信息理论方法相关的复杂近似值。凭借最少的计算开销,JES展示了卓越的决策,并在各种任务中提供了信息理论方法的最新性能。作为具有出色结果的轻重量方法,JES为贝叶斯优化提供了新的首选功能。
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
许多昂贵的黑匣子优化问题对其输入敏感。在这些问题中,定位一个良好的设计区域更有意义,而不是一个可能的脆弱的最佳设计。昂贵的黑盒功能可以有效地优化贝叶斯优化,在那里高斯过程是在昂贵的功能之前的流行选择。我们提出了一种利用贝叶斯优化的强大优化方法,找到一种设计空间区域,其中昂贵的功能的性能对输入相对不敏感,同时保持质量好。这是通过从正在建模昂贵的功能的高斯进程的实现来实现这一点,并评估每个实现的改进。这些改进的期望可以用进化算法廉价地优化,以确定评估昂贵功能的下一个位置。我们描述了一个有效的过程来定位最佳预期改进。我们凭经验展示了评估候选不确定区域的昂贵功能的昂贵功能,该模型最不确定,或随机地产生最佳收敛与利用方案相比。我们在两个,五个和十个维度中说明了我们的六个测试功能的方法,并证明它能够优于来自文献的两种最先进的方法。我们还展示了我们的方法在4和8维中展示了两个真实问题,这涉及训练机器人臂,将物体推到目标上。
translated by 谷歌翻译
Bayesian Optimization(Bo)是全球优化昂贵的客观功能的框架。古典BO方法假设客观函数是一个黑匣子。但是,有关客观函数计算的内部信息通常可用。例如,在使用模拟优化制造行的吞吐量时,除了整体吞吐量之外,我们还会观察每个工作站等待等待的部件数。最近的BO方法利用此类内部信息显着提高性能。我们称之为这些“灰盒”BO方法,因为它们将客观计算视为部分可观察且甚至可修改,将黑盒方法与所谓的“白盒”的第一原理进行客观函数计算的知识。本教程描述了这些方法,专注于复合物镜功能的博,其中可以观察和选择性地评估饲喂整体目标的单个成分;和多保真博,其中一个人可以通过改变评估oracle的参数来评估目标函数的更便宜的近似。
translated by 谷歌翻译
由于其良好的特性,诸如高强度重量比,设计灵活性,限量的应力浓度,平面力传递,良好损害耐受性和疲劳性,因此越来越多地应用于各种应用的各种应用。寻找粘合剂粘合过程的最佳过程参数是具有挑战性的:优化是固有的多目标(旨在最大限度地提高断裂强度,同时最小化成本)和受约束(该过程不应导致材料的任何视觉损坏,应应对压力测试不会导致粘附相关的故障。实验室中的现实生活实验需要昂贵;由于评估所需的禁止的实验,传统的进化方法(如遗传算法)被否则适合解决问题。在本研究中,我们成功地应用了特定的机器学习技术(高斯过程回归和逻辑回归),以基于有限量的实验数据来模拟目标和约束函数。该技术嵌入贝叶斯优化算法中,该算法成功地以高效的方式检测静态过程设置(即,需要有限数量的额外实验)。
translated by 谷歌翻译
许多现实世界的科学和工业应用都需要优化多个竞争的黑盒目标。当目标是昂贵的评估时,多目标贝叶斯优化(BO)是一种流行的方法,因为其样品效率很高。但是,即使有了最近的方法学进步,大多数现有的多目标BO方法在具有超过几十个参数的搜索空间上的表现较差,并且依赖于随着观测值数量进行立方体扩展的全局替代模型。在这项工作中,我们提出了Morbo,这是高维搜索空间上多目标BO的可扩展方法。 Morbo通过使用协调策略并行在设计空间的多个局部区域中执行BO来确定全球最佳解决方案。我们表明,Morbo在几种高维综合问题和现实世界应用中的样品效率中的最新效率显着提高,包括光学显示设计问题和146和222参数的车辆设计问题。在这些问题上,如果现有的BO算法无法扩展和表现良好,Morbo为从业者提供了刻度级别的效率,则在当前方法上可以提高样本效率。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
在工程和科学的许多领域中,优化多个混合变量,昂贵的黑盒问题的多个非首选目标很重要。这些问题的昂贵,嘈杂,黑盒的性质使它们成为贝叶斯优化(BO)的理想候选者。然而,由于BO的基础平稳的高斯工艺替代模型,混合变量和多目标问题是一个挑战。当前的多目标BO算法无法处理可混合变量的问题。我们提出了MixMobo,这是第一个用于此类问题的混合变量,多目标贝叶斯优化框架。使用MixMobo,可以有效地找到用于多目标,混合变量设计空间的最佳帕累托叶,同时确保多样化的解决方案。该方法足够灵活地结合了不同的内核和采集功能,包括其他作者为混合变量或多目标问题开发的函数。我们还提出了Hedgemo,这是一种修改后的对冲策略,该策略使用采集功能的投资组合来解决多目标问题。我们提出了新的采集功能,SMC。我们的结果表明,MixMobo在合成问题上针对其他可混合变量算法表现良好。我们将MixMobo应用于架构材料的现实世界设计,并表明我们的最佳设计是经过实验制造和验证的,其应变能密度$ 10^4 $ $ 10^4 $ $倍。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
机器学习系统的设计通常需要交易不同的目标,例如,深度神经网络(DNN)的预测错误和能耗。通常,没有任何单一的设计在所有目标中都表现良好,因此,找到帕累托最佳的设计令人感兴趣。通常,测量不同的目标会产生不同的成本;例如,测量DNN的预测误差的成本比测量预先训练的DNN的能源消耗的数量级高,因为它需要重新训练DNN。当前的最新方法没有考虑到客观评估成本的这种差异,可能会浪费对目标功能的昂贵评估,从而获得很少的信息增益。在本文中,我们开发了一种新颖的分离成本感知方法,我们称为灵活的多目标贝叶斯优化(Flexibo)来解决此问题。 Flexibo通过每个目标的测量成本来加权帕累托区的超量。这有助于我们平衡收集新信息与通过客观评估获得的知识的费用,从而阻止我们几乎没有收益进行昂贵的测量。我们在七个最先进的DNN上评估了图像识别,自然语言处理(NLP)和语音到文本翻译的Flexibo。我们的结果表明,鉴于相同的总实验预算,Flexibo发现的设计比下一个最佳最佳多目标优化方法低4.8%至12.4%,具体取决于特定的DNN体系结构。
translated by 谷歌翻译