当人类播放虚拟赛车游戏时,他们使用游戏屏幕上的视觉环境信息来了解环境中的规则。相比之下,优于人类玩家的最先进的现实赛车游戏AI代理商不使用基于图像的环境信息,而是由环境提供的紧凑和精确的测量。在本文中,提出了一种基于视觉的控制算法,并在使用Gran Turismo Sport(GTS)的现实赛车场景中的相同条件下与人类播放器性能进行比较,这被称为高保真逼真的赛车模拟器。在所提出的方法中,构成在传统最先进的方法中的部分观测的环境信息被从游戏屏幕图像中提取的特征表示替换。我们证明,即使使用游戏屏幕图像,所提出的方法也在高速驾驶场景下执行专家人级车辆控制,作为游戏屏幕图像作为高维输入。此外,它在时间试用任务中以GTS中内置的AI占此胜过,其分数将其分为大约28,000人的人类玩家。
translated by 谷歌翻译
本文探讨了强化学习(RL)模型用于自动赛车的使用。与安全车是头等大事的乘用车相反,赛车的目的是最大程度地减少单圈时间。我们将问题视为一项强化学习任务,其中包括由车辆遥测组成的多维输入和连续的动作空间。为了找出哪种RL方法更好地解决了问题,以及获得的模型是否推广到未知轨道上,我们将10种深层确定性策略梯度(DDPG)变体进行了两个实验:i)〜研究RL方法如何学习驱动驱动赛车和ii)研究学习方案如何影响模型的推广能力。我们的研究表明,接受RL训练的模型不仅能够比基线开源手工机器人更快地驾驶,而且还可以推广到未知轨道。
translated by 谷歌翻译
深度强化学习(DRL)是一种仅从演示和经验中学习机器人控制政策的有前途的方法。为了涵盖机器人的整个动态行为,DRL训练是通常在仿真环境中得出的主动探索过程。尽管这种模拟培训廉价且快速,但将DRL算法应用于现实世界的设置很困难。如果对代理进行训练直到它们在模拟中安全执行,则由于模拟动力学和物理机器人之间的差异引起的SIM到真实差距,将其传输到物理系统很困难。在本文中,我们提出了一种在线培训DRL代理的方法,可以使用基于模型的安全主管在实体车辆上自动驾驶。我们的解决方案使用监督系统检查代理选择的操作是安全还是不安全,并确保在车辆上始终采取安全措施。这样,我们可以在安全,快速,有效地训练DRL算法的同时绕过SIM到现实的问题。我们提供各种现实世界实验,在线培训一辆小型实体车辆,可以自动驾驶,没有事先模拟培训。评估结果表明,我们的方法在未崩溃的同时提高了样品效率的训练代理,并且受过训练的代理比在模拟中训练的代理表现出更好的驾驶性能。
translated by 谷歌翻译
数据驱动的模拟器承诺高数据效率进行驾驶策略学习。当用于建模相互作用时,这种数据效率变为瓶颈:小型基础数据集通常缺乏用于学习交互式驾驶的有趣和具有挑战性的边缘案例。我们通过提出使用绘制的ADO车辆学习强大的驾驶策略的仿真方法来解决这一挑战。因此,我们的方法可用于学习涉及多代理交互的策略,并允许通过最先进的策略学习方法进行培训。我们评估了驾驶中学习标准交互情景的方法。在广泛的实验中,我们的工作表明,由此产生的政策可以直接转移到全规模的自治车辆,而无需使用任何传统的SIM-to-Real传输技术,例如域随机化。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end model trained via imitation learning, and an end-to-end model trained via reinforcement learning. The approaches are evaluated in controlled scenarios of increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform's utility for autonomous driving research.
translated by 谷歌翻译
在自主赛车局势中呈现的挑战与常规自主驾驶中面临的挑战不同,并且需要更快的端到端算法,并考虑确定最佳当前动作,以便在思想即将到来的演习和情况下保持最佳的动作。在本文中,我们提出了一种用于自主赛车的端到端方法,其从板载相机中获取作为输入视频信息,并确定最终的转向和节流控制动作。我们使用以下拆分构造这样的方法(1)学习场景的低维表示,(2)预先生成给定场景的最佳轨迹,以及(3)使用经典控制方法跟踪预测的轨迹。在学习场景的低维表示时,我们使用具有新颖的无监督轨迹策划器来生成专家轨迹的中间表示,因此利用它们直接从给定的前面输入图像预测竞争线。因此,所提出的算法采用了最佳的两个世界 - 基于学习的基于方法的鲁棒性以及基于端到端学习的框架中的轨迹生成的优化方法的准确性。我们部署并展示了我们在Carla上的框架,这是一个用于测试现实环境中的自动驾驶汽车的质感型模拟器。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
Reinforcement learning (RL) is a promising solution for autonomous vehicles to deal with complex and uncertain traffic environments. The RL training process is however expensive, unsafe, and time consuming. Algorithms are often developed first in simulation and then transferred to the real world, leading to a common sim2real challenge that performance decreases when the domain changes. In this paper, we propose a transfer learning process to minimize the gap by exploiting digital twin technology, relying on a systematic and simultaneous combination of virtual and real world data coming from vehicle dynamics and traffic scenarios. The model and testing environment are evolved from model, hardware to vehicle in the loop and proving ground testing stages, similar to standard development cycle in automotive industry. In particular, we also integrate other transfer learning techniques such as domain randomization and adaptation in each stage. The simulation and real data are gradually incorporated to accelerate and make the transfer learning process more robust. The proposed RL methodology is applied to develop a path following steering controller for an autonomous electric vehicle. After learning and deploying the real-time RL control policy on the vehicle, we obtained satisfactory and safe control performance already from the first deployment, demonstrating the advantages of the proposed digital twin based learning process.
translated by 谷歌翻译
在自主驾驶场中,人类知识融合到深增强学习(DRL)通常基于在模拟环境中记录的人类示范。这限制了在现实世界交通中的概率和可行性。我们提出了一种两级DRL方法,从真实的人类驾驶中学习,实现优于纯DRL代理的性能。培训DRL代理商是在Carla的框架内完成了机器人操作系统(ROS)。对于评估,我们设计了不同的真实驾驶场景,可以将提出的两级DRL代理与纯DRL代理进行比较。在从人驾驶员中提取“良好”行为之后,例如在信号交叉口中的预期,该代理变得更有效,并且驱动更安全,这使得这种自主代理更适应人体机器人交互(HRI)流量。
translated by 谷歌翻译
We develop a hierarchical controller for head-to-head autonomous racing. We first introduce a formulation of a racing game with realistic safety and fairness rules. A high-level planner approximates the original formulation as a discrete game with simplified state, control, and dynamics to easily encode the complex safety and fairness rules and calculates a series of target waypoints. The low-level controller takes the resulting waypoints as a reference trajectory and computes high-resolution control inputs by solving an alternative formulation with simplified objectives and constraints. We consider two approaches for the low-level planner, constructing two hierarchical controllers. One approach uses multi-agent reinforcement learning (MARL), and the other solves a linear-quadratic Nash game (LQNG) to produce control inputs. The controllers are compared against three baselines: an end-to-end MARL controller, a MARL controller tracking a fixed racing line, and an LQNG controller tracking a fixed racing line. Quantitative results show that the proposed hierarchical methods outperform their respective baseline methods in terms of head-to-head race wins and abiding by the rules. The hierarchical controller using MARL for low-level control consistently outperformed all other methods by winning over 88% of head-to-head races and more consistently adhered to the complex racing rules. Qualitatively, we observe the proposed controllers mimicking actions performed by expert human drivers such as shielding/blocking, overtaking, and long-term planning for delayed advantages. We show that hierarchical planning for game-theoretic reasoning produces competitive behavior even when challenged with complex rules and constraints.
translated by 谷歌翻译
本文介绍了一个自适应寻道纯追踪横向控制器,用于优化赛车度量,如圈时间,平均圈速度,以及从自主赛车场景中的参考轨迹的偏离。我们提出了一种贪婪的算法来计算和为每个航空点计算和分配用于改进种族度量的参考轨迹的纯Puppuit控制器的最佳保护距。我们使用基于ROS的自主赛车模拟器来评估自适应纯追踪算法,并将我们的方法与其他基于纯粹的横向控制器进行比较。我们还在使用F1 / 10自动raceCar上展示了我们在缩放实际测试的方法上。我们的方法导致自动racecar的赛车指标中的重大改善(20%)。
translated by 谷歌翻译
结肠镜检查的柔性内窥镜由于其固有的复杂性而产生了一些局限性,导致患者不适和缺乏临床医生的直觉。机器人设备和自主控制代表了一种可行的解决方案,以减少内镜医生的工作量和训练时间,同时改善整体程序结果。自主内窥镜控制的先前工作使用启发式政策,将其概括限制在非结构化和高度可变形的结肠环境中,需要频繁进行人类干预。这项工作提出了一种基于图像的内窥镜控制,使用深钢筋学习,称为深度视觉运动控制(DVC),以在结肠道的复杂部分中表现出适应性行为。 DVC学习内窥镜图像与内窥镜的控制信号之间的映射。对20位专家胃肠道内镜医生进行的首次用户研究是为了将其导航性能与使用现实的虚拟模拟器进行比较的DVC策略。结果表明,DVC在几个评估参数上显示出同等的性能,更安全。此外,与最先进的启发式控制政策相比,对20名新手参与者进行了第二次用户研究,以证明人类的监督更容易。对结肠镜检查程序的无缝监督将使干预主义者能够专注于医疗决策,而不是内窥镜的控制问题。
translated by 谷歌翻译
Aerial view of test environment (b) Vision-based driving, view from onboard camera (c) Side view of vehicle Fig. 1. Conditional imitation learning allows an autonomous vehicle trained end-to-end to be directed by high-level commands. (a) We train and evaluate robotic vehicles in the physical world (top) and in simulated urban environments (bottom). (b) The vehicles drive based on video from a forward-facing onboard camera. At the time these images were taken, the vehicle was given the command "turn right at the next intersection". (c) The trained controller handles sensorimotor coordination (staying on the road, avoiding collisions) and follows the provided commands.
translated by 谷歌翻译
我们解决了在存在障碍物的情况下,通过一系列航路点来解决四肢飞行的最低时间飞行问题,同时利用了完整的四型动力学。早期作品依赖于简化的动力学或多项式轨迹表示,而这些动力学或多项式轨迹表示,这些表示没有利用四四光的全部执行器电位,因此导致了次优溶液。最近的作品可以计划最小的时间轨迹;然而,轨迹是通过无法解释障碍的控制方法执行的。因此,由于模型不匹配和机上干扰,成功执行此类轨迹很容易出现错误。为此,我们利用深厚的强化学习和经典的拓扑路径计划来训练强大的神经网络控制器,以在混乱的环境中为最少的四型四型飞行。由此产生的神经网络控制器表现出比最新方法相比,高达19%的性能要高得多。更重要的是,博学的政策同时在线解决了计划和控制问题,以解决干扰,从而实现更高的鲁棒性。因此,提出的方法在没有碰撞的情况下实现了100%的最低时间策略的成功率,而传统的计划和控制方法仅获得40%。所提出的方法在模拟和现实世界中均已验证,四速速度高达42公里/小时,加速度为3.6g。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
在典型的自主驾驶堆栈中,计划和控制系统代表了两个最关键的组件,其中传感器检索并通过感知算法处理的数据用于实施安全舒适的自动驾驶行为。特别是,计划模块可以预测自动驾驶汽车应遵循正确的高级操作的路径,而控制系统则执行一系列低级动作,控制转向角度,油门和制动器。在这项工作中,我们提出了一个无模型的深钢筋学习计划者培训一个可以预测加速度和转向角度的神经网络,从而获得了一个单个模块,可以使用自我自我的本地化和感知算法处理的数据来驱动车辆-驾车。特别是,在模拟中进行了全面训练的系统能够在模拟和帕尔马市现实世界中的无障碍环境中平稳驱动,证明该系统具有良好的概括能力,也可以驱动驱动在培训方案之外的那些部分。此外,为了将系统部署在真正的自动驾驶汽车上,并减少模拟和现实世界中的差距,我们还开发了一个由微小的神经网络表示的模块,能够在期间重现真正的车辆动态行为模拟的培训。
translated by 谷歌翻译
用于训练自动汽车的两种目前的方法是加强学习和模仿学习。本研究通过将监督模仿学习集成到强化学习中,在模拟和更小的现实世界环境中开发了一种新的学习方法和系统方法,使RL训练数据收集过程更有效和高效。通过组合这两种方法,所提出的研究成功利用了RL和IL方法的优点。首先,使用模仿学习将一个真正的迷你级机器人汽车组装并培训了6英尺的真实世界轨道。在此过程中,通过模仿人类专家驱动程序并手动记录使用Microsoft Airsim的API手动记录动作来控制迷你级机器人车辆以控制磁级机器人车辆。 331能够生成和收集准确的人类奖励训练样本。然后,使用加强学习在Microsoft Airsim模拟器中培训了一个代理,使用初始331奖励数据从模仿学习培训输入的初始331奖励数据。经过6小时的培训期后,迷你规模的机器人汽车能够在迷你级机器人汽车无法完成一个全圈,即使在30之后,迷你规模机器人汽车无法完成一个全圈小时培训纯RL培训。培训时间减少80%,新方法每小时产生更高的平均奖励。因此,新方法能够节省大量的培训时间,可用于加速自动驾驶中的RL的采用,这将有助于在应用于现实生活场景时长期产生更有效和更好的结果。关键词:加固学习(RL),仿制学习(IL),自主驾驶,人类驾驶数据,CNN
translated by 谷歌翻译