Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
Computer tomography (CT) have been routinely used for the diagnosis of lung diseases and recently, during the pandemic, for detecting the infectivity and severity of COVID-19 disease. One of the major concerns in using ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting is that these methods are trained on limited and biased sub-sets of publicly available COVID-19 data. This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training. To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models. For the external validation we generated Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative performance evaluation of four state-of-the-art machine learning models, viz., a lightweight convolutional neural network (CNN), and three other CNN based deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes, viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two datasets. Our analysis showed that the performance of all the models is comparable on the hold-out COVIDx CT 2A test set with 90% - 99% accuracies (96% for CNN), while on the external Indian-COVID-19 CT dataset a drop in the performance is observed for all the models (8% - 19%). The traditional ma-chine learning model, CNN performed the best on the external dataset (accu-racy 88%) in comparison to the deep learning models, indicating that a light-weight CNN is better generalizable on unseen data. The data and code are made available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
一种名为Covid-19的新发现的冠状病毒疾病主要影响人类呼吸系统。 Covid-19是一种由起源于中国武汉的病毒引起的传染病。早期诊断是医疗保健提供者的主要挑战。在较早的阶段,医疗机构令人眼花azz乱,因为没有适当的健康辅助工具或医学可以检测到COVID-19。引入了一种新的诊断工具RT-PCR(逆转录聚合酶链反应)。它从患者的鼻子或喉咙中收集拭子标本,在那里共有19个病毒。该方法有一些与准确性和测试时间有关的局限性。医学专家建议一种称为CT(计算机断层扫描)的替代方法,该方法可以快速诊断受感染的肺部区域并在早期阶段识别Covid-19。使用胸部CT图像,计算机研究人员开发了几种识别Covid-19疾病的深度学习模型。这项研究介绍了卷积神经网络(CNN)和基于VGG16的模型,用于自动化的COVID-19在胸部CT图像上识别。使用14320 CT图像的公共数据集的实验结果显示,CNN和VGG16的分类精度分别为96.34%和96.99%。
translated by 谷歌翻译
In this paper, deep-learning-based approaches namely fine-tuning of pretrained convolutional neural networks (VGG16 and VGG19), and end-to-end training of a developed CNN model, have been used in order to classify X-Ray images into four different classes that include COVID-19, normal, opacity and pneumonia cases. A dataset containing more than 20,000 X-ray scans was retrieved from Kaggle and used in this experiment. A two-stage classification approach was implemented to be compared to the one-shot classification approach. Our hypothesis was that a two-stage model will be able to achieve better performance than a one-shot model. Our results show otherwise as VGG16 achieved 95% accuracy using one-shot approach over 5-fold of training. Future work will focus on a more robust implementation of the two-stage classification model Covid-TSC. The main improvement will be allowing data to flow from the output of stage-1 to the input of stage-2, where stage-1 and stage-2 models are VGG16 models fine-tuned on the Covid-19 dataset.
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
这项研究中我们的主要目标是提出一种基于转移学习的方法,用于从计算机断层扫描(CT)图像中检测。用于任务的转移学习模型是验证的X受感受模型。使用了模型结构和ImageNet上的预训练权重。通过128批量的大小和224x224、3个通道输入图像训练所得的修改模型,并从原始512x512,灰度图像转换。使用的数据集是A COV19-CT-DB。数据集中的标签包括1919年COVID-1919检测的COVID-19病例和非旋转19例。首先,使用数据集的验证分区以及精确召回和宏F1分数的准确性和损失来衡量所提出方法的性能。验证集中的最终宏F1得分超过了基线模型。
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
由于能够提高几个诊断任务的性能,深度神经网络越来越多地被用作医疗保健应用中的辅助工具。然而,由于基于深度学习系统的可靠性,概括性和可解释性的实际限制,这些方法在临床环境中不被广泛采用。因此,已经开发了方法,这在网络培训期间强加了额外的限制,以获得更多的控制,并改善探讨他们在医疗界的接受。在这项工作中,我们调查使用正交球(OS)约束对胸部X射线图像进行Covid-19案例的分类的益处。 OS约束可以写成一个简单的正交性术语,其与分类网络训练期间的标准交叉熵损耗结合使用。以前的研究表明,在对深度学习模型上对这种限制应用于应用这些限制方面表现出显着的益处。我们的研究结果证实了这些观察结果,表明正常性损失函数有效地通过Gradcam可视化,增强的分类性能和减少的模型校准误差产生了改进的语义本地化。我们的方法分别实现了两性和三类分类的准确性提高1.6%和4.8%;找到了应用数据增强的模型的类似结果。除了这些发现之外,我们的工作还提出了OS规范器在医疗保健中的新应用,提高了CoVID-19分类深度学习模型的后HOC可解释性和性能,以便于在临床环境中采用这些方法。我们还确定了我们将来可以探索进一步研究的战略的局限性。
translated by 谷歌翻译
本文提出了一种用于图像分类的卷积神经网络(CNN)模型,旨在提高Covid-19诊断的预测性能,同时避免更深,因此更复杂的替代方案。所提出的模型包括四个类似的卷积层,然后是扁平化和两个致密层。这项工作提出了一种基于仅通过2D CNN模型的像素的图像的简单分类2D CT扫描片图像的较差的解决方案。尽管架构中的简单性,所提出的模型在宏F1分数方面,所提出的模型显示出超过最先进的图像上的定量结果超过了相同数据集。在这种情况下,从图像中提取特征,图像的分割部分,或其他更复杂的技术,最终瞄准图像分类,不会产生更好的结果。由此,本文介绍了一个简单而强大的深度学习的自动化Covid-19分类解决方案。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
有必要开发负担得起且可靠的诊断工具,该工具允许包含COVID-19的扩散。已经提出了机器学习(ML)算法来设计支持决策系统以评估胸部X射线图像,事实证明,这些图像可用于检测和评估疾病进展。许多研究文章围绕此主题发表,这使得很难确定未来工作的最佳方法。本文介绍了使用胸部X射线图像应用于COVID-19检测的ML的系统综述,旨在就方法,体系结构,数据库和当前局限性为研究人员提供基线。
translated by 谷歌翻译
逆转录 - 聚合酶链反应(RT-PCR)目前是Covid-19诊断中的金标准。然而,它可以花几天来提供诊断,假负率相对较高。成像,特别是胸部计算断层扫描(CT),可以有助于诊断和评估这种疾病。然而,表明标准剂量CT扫描对患者提供了显着的辐射负担,尤其是需要多次扫描的患者。在这项研究中,我们考虑低剂量和超低剂量(LDCT和ULDCT)扫描方案,其减少靠近单个X射线的辐射曝光,同时保持可接受的分辨率以进行诊断目的。由于胸部放射学专业知识可能不会在大流行期间广泛使用,我们使用LDCT / ULDCT扫描的收集的数据集进行人工智能(AI)基础的框架,以研究AI模型可以提供人为级性能的假设。 AI模型使用了两个阶段胶囊网络架构,可以快速对Covid-19,社区获得的肺炎(帽)和正常情况进行分类,使用LDCT / ULDCT扫描。 AI模型实现Covid-19敏感性为89.5%+ - 0.11,帽敏感性为95%+ \ - 0.11,正常情况敏感性(特异性)85.7%+ - 0.16,精度为90%+ \ - 0.06。通过纳入临床数据(人口统计和症状),性能进一步改善了Covid-19敏感性为94.3%+ \ - PM 0.05,帽敏感性为96.7%+ \ - 0.07,正常情况敏感性(特异性)91%+ - 0.09,精度为94.1%+ \ - 0.03。所提出的AI模型基于降低辐射暴露的LDCT / ULDCT扫描来实现人级诊断。我们认为,所提出的AI模型有可能协助放射科医师准确,并迅速诊断Covid-19感染,并帮助控制大流行期间的传输链。
translated by 谷歌翻译
2019年新型冠状病毒疾病(Covid-19)是一种致命的传染病,于2019年12月在中国武汉武汉(Wuhan)首次识别,并且一直处于流行状态。在这种情况下,在感染人群中检测到Covid-19变得越来越重要。如今,与感染人群数量相比,测试套件的数量逐渐减少。在最近的流行条件下,通过分析胸部CT(计算机断层扫描)图像诊断肺部疾病已成为COVID-19患者诊断和预言的重要工具。在这项研究中,已经提出了一种从CT图像检测COVID-19感染的转移学习策略(CNN)。在拟议的模型中,已经设计了具有转移学习模型V3的多层卷积神经网络(CNN)。与CNN类似,它使用卷积和汇总来提取功能,但是该传输学习模型包含数据集成像网的权重。因此,它可以非常有效地检测功能,从而使其在获得更好的准确性方面具有优势。
translated by 谷歌翻译
该技术报告建议将深卷卷神经网络用作初步的诊断方法,用于分析来自严重急性呼吸系统症状(SARS)症状的胸部计算机断层扫描图像(SARS)和怀疑的Covid-19疾病,尤其是在延迟时在RT-PCR结果和缺乏紧急护理的情况下,可能会导致严重的暂时,长期或永久性健康损害。该模型接受了83,391张图像的培训,并在15,297张验证,并在22,185个数字上进行了测试,在Cohen's Kappa中获得了98%的F1分数,准确性98.4%,损失为5.09%。与当前的金色标准检查,实时反向转录酶聚合酶链反应(RT-PCR)相比,证明高度准确的自动分类并提供的时间更少。 - o存在相关性\'orio t \'ecnico prop \ 〜oe a fituiliza \ c {c} \ 〜ao de uma de uma de uma de uma de uma de uma de uma rede refolucional refolucional profunda como m \'etodo' tomografia computadorizada tor \'accica em pacientes com sintomas de s \'indrome respirat \'oria aguda grave(srag) ^encia de cuidados ungratees poderia acartar graves danos temer \'arios,\`longo prazo,ou permanentes \ a a sa \'ude。 o Modelo Foi Treinado EM 83.391成像,VILEDADO EM 15.297,E TESTADO EM 22.185 FIGURAS,ATINGINDO PONTUA \ C {C} \ 〜AO no F1-SCORE DE 98%,97,59%EM COHEN KAPPA,98,4%DEACUR,98,4%DEACUR \'acia e 5,09%损失。 atestando uma classifica \ c {c} \ 〜ao aumatizada r \'apida e de alta precis \ 〜ao,e fornecendo resuldo exultado em tempo menor ao ao do exame padr \ 〜Ao-ao-outo atual,o实时反向转移酶聚合酶链链反应(RT-PCR)。
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
背景和目的:与生物医学分析相结合的人工智能(AI)方法在Pandemics期间具有关键作用,因为它有助于释放来自医疗保健系统和医生的压力压力。由于持续的Covid-19危机在具有茂密的人口和巴西和印度等测试套件中的国家恶化,放射性成像可以作为准确分类Covid-19患者的重要诊断工具,并在适当时期规定必要的治疗。通过这种动机,我们基于使用胸部X射线检测Covid-19感染肺的深度学习架构的研究。数据集:我们共收集了三种不同类标签的2470张图片,即健康的肺,普通肺炎和Covid-19感染的肺炎,其中470个X射线图像属于Covid-19类。方法:我们首先使用直方图均衡技术预处理所有图像,并使用U-Net架构进行它们。然后,VGG-16网络用于从预处理图像中的特征提取,该特征提取通过SMTE过采样技术进一步采样以实现平衡数据集。最后,使用具有10倍交叉验证的支持向量机(SVM)分类器分类类平衡功能,评估精度。结果和结论:我们的新方法结合了众所周知的预处理技术,特征提取方法和数据集平衡方法,使我们在2470 X射线图像的数据集中获得了Covid-19图像的优秀识别率为98% 。因此,我们的模型适用于用于筛选目的的医疗保健设施。
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
这项研究的目的是开发一个强大的基于深度学习的框架,以区分Covid-19,社区获得的肺炎(CAP)和基于使用各种方案和放射剂量在不同成像中心获得的胸部CT扫描的正常病例和正常情况。我们表明,虽然我们的建议模型是在使用特定扫描协议仅从一个成像中心获取的相对较小的数据集上训练的,但该模型在使用不同技术参数的多个扫描仪获得的异质测试集上表现良好。我们还表明,可以通过无监督的方法来更新模型,以应对火车和测试集之间的数据移动,并在从其他中心接收新的外部数据集时增强模型的鲁棒性。我们采用了合奏体系结构来汇总该模型的多个版本的预测。为了初始培训和开发目的,使用了171 Covid-19、60 CAP和76个正常情况的内部数据集,其中包含使用恒定的标准辐射剂量扫描方案从一个成像中心获得的体积CT扫描。为了评估模型,我们回顾了四个不同的测试集,以研究数据特征对模型性能的转移的影响。在测试用例中,有与火车组相似的CT扫描,以及嘈杂的低剂量和超低剂量CT扫描。此外,从患有心血管疾病或手术病史的患者中获得了一些测试CT扫描。这项研究中使用的整个测试数据集包含51 covid-19、28 CAP和51例正常情况。实验结果表明,我们提出的框架在所有测试集上的表现良好,达到96.15%的总准确度(95%CI:[91.25-98.74]),COVID-119,COVID-96.08%(95%CI:[86.54-99.5],95%),[86.54-99.5],),,),敏感性。帽敏感性为92.86%(95%CI:[76.50-99.19])。
translated by 谷歌翻译
新的SARS-COV-2大流行病也被称为Covid-19一直在全世界蔓延,导致生活猖獗。诸如CT,X射线等的医学成像在通过呈现器官功能的视觉表示来诊断患者时起着重要作用。然而,对于任何分析这种扫描的放射科学家是一种乏味且耗时的任务。新兴的深度学习技术展示了它的优势,在分析诸如Covid-19等疾病和病毒的速度更快的诊断中有助于帮助。在本文中,提出了一种基于自动化的基于深度学习的模型CoVID-19层级分割网络(CHS-Net),其用作语义层次分段器,以通过使用两个级联的CT医学成像来识别来自肺轮廓的Covid-19受感染的区域剩余注意力撤销U-NET(RAIU-Net)模型。 Raiu-net包括具有频谱空间和深度关注网络(SSD)的剩余成立U-Net模型,该网络(SSD)是由深度可分离卷积和混合池(MAX和频谱池)的收缩和扩展阶段开发的,以有效地编码和解码语义和不同的分辨率信息。 CHS-NET接受了分割损失函数的培训,该损失函数是二进制交叉熵损失和骰子损失的平均值,以惩罚假阴性和假阳性预测。将该方法与最近提出的方法进行比较,并使用标准度量评估,如准确性,精度,特异性,召回,骰子系数和jaccard相似度以及与Gradcam ++和不确定性地图的模型预测的可视化解释。随着广泛的试验,观察到所提出的方法优于最近提出的方法,并有效地将Covid-19受感染的地区进行肺部。
translated by 谷歌翻译