无监督的强化学习(RL)研究如何利用环境统计,在没有奖励工程成本的情况下学习有用的行为。然而,无监督的RL中的中央挑战是提取有意义地影响世界的行为,并涵盖可能的结果的范围,而不会被环境中固有的不可预测,无法控制和随机元素分散。为此,我们提出了一种无监督的RL方法,该方法是基于两项政策(我们呼叫探索和控制)之间的对手游戏而设计的高维,随机环境,控制单个身体并在观察熵的数量上竞争代理体验。探索代理寻求最大惊喜控制代理的状态,这反过来旨在最大限度地减少惊喜,从而操纵环境以返回熟悉和可预测的状态。这两项政策之间的竞争驱使他们寻求越来越令人惊讶的环境,同时学习掌握它们。我们正式显示所得算法,最大化块MDP的底层状态的覆盖率,随机观察,提供了对我们假设的理论备份,即该程序避免了无法控制和随机分心。我们的实验进一步表明对抗性惊喜导致复杂和有意义的技能的出现,并且在勘探和零射击转移到下游任务方面优于最先进的无监督的加强学习方法。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
人类和动物探索他们的环境,即使在没有明确目标的情况下,也可以获得有用的技能,表现出内在的动机。人工代理中的内在动机研究涉及以下问题:代理人的良好通用目标是什么?我们在动态部分观测的环境中研究了这个问题,并争辩说,紧凑且一般的学习目标是最大限度地减少使用潜在的状态空间模型估算的代理国家探索的熵。该目标诱使代理人与其环境收集有关其环境的信息,相应降低不确定性,并控制其环境,相应降低未来世界州的不可预测性。我们将这种方法实例化为配备深层变分贝叶斯过滤器的深度加固学习代理。我们发现我们的代理商学会发现,代表和锻炼在没有外在奖励的视觉观测中感受到的各种部分观测的环境中的动态对象。
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译
有效的探索仍然是强化学习中有挑战性的问题,特别是对于来自环境的外在奖励稀疏甚至完全忽视的任务。基于内在动机的重要进展显示了在简单环境中的有希望的结果,但通常会在具有多式联运和随机动力学的环境中陷入困境。在这项工作中,我们提出了一种基于条件变分推理的变分动力模型来模拟多模和随机性。通过在当前状态,动作和潜在变量的条件下产生下一个状态预测,我们考虑作为条件生成过程的环境状态动作转换,这提供了更好地了解动态并在勘探中引发更好的性能。我们派生了环境过渡的负面日志可能性的上限,并使用这样一个上限作为勘探的内在奖励,这使得代理通过自我监督的探索来学习技能,而无需观察外在奖励。我们在基于图像的仿真任务和真正的机器人操纵任务中评估所提出的方法。我们的方法优于若干基于最先进的环境模型的勘探方法。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
任务 - 无人探索的常见方法学习塔杜拉 - RASA - 代理商假设隔离环境,没有先验的知识或经验。然而,在现实世界中,代理商在许多环境中学习,并且随着他们探索新的环境,始终伴随着事先经验。探索是一场终身的过程。在本文中,我们提出了对任务无关探索的制定和评估的范式变迁。在此设置中,代理首先学会在许多环境中探索,没有任何外在目标的任务不可行的方式。后来,代理商有效地传输了学习探索政策,以便在解决任务时更好地探索新环境。在这方面,我们评估了几种基线勘探战略,并提出了一种简单但有效的学习任务无关探索政策方法。我们的主要思想是,有两种勘探组成部分:(1)基于代理人的信仰,促进探索探索环境的经验主义部分; (2)以环境为中心的组件,鼓励探索固有的有趣物体。我们表明我们的配方是有效的,并提供多种训练测试环境对的最一致的探索。我们还介绍了评估任务无关勘探策略的基准和指标。源代码在https://github.com/sparisi/cbet/处获得。
translated by 谷歌翻译
离线RL算法必须说明其提供的数据集可能使环境的许多方面未知。应对这一挑战的最常见方法是采用悲观或保守的方法,避免行为与培训数据集中的行为过于不同。但是,仅依靠保守主义存在缺点:绩效对保守主义的确切程度很敏感,保守的目标可以恢复高度最佳的政策。在这项工作中,我们建议在不确定性的情况下,脱机RL方法应该是适应性的。我们表明,在贝叶斯的意义上,在离线RL中最佳作用涉及解决隐式POMDP。结果,离线RL的最佳策略必须是自适应的,这不仅取决于当前状态,而且还取决于迄今为止在评估期间看到的所有过渡。我们提出了一种无模型的算法,用于近似于此最佳自适应策略,并证明在离线RL基准测试中学习此类适应性政策。
translated by 谷歌翻译
奖励成型(RS)是克服稀疏或不信息奖励问题的强大方法(RL)。但是,RS通常依赖于手动设计的成型奖励功能,其构造耗时且容易出错。它还需要与自主学习目标相反的领域知识。我们介绍了增强学习优化塑造算法(ROSA)的增强型,这是一个自动化的RS框架,其中塑造奖励函数是在两个代理之间的新型马尔可夫游戏中构建的。奖励塑料代理(Shaper)使用切换控件来确定在其他代理(控制器)使用这些形状奖励的任务中学习任务的最佳策略,以确定要添加形状奖励及其最佳值的状态。我们证明,Rosa很容易采用现有的RL算法,学会了构建针对任务的塑造奖励功能,从而确保有效地收敛到高性能策略。我们在三个经过精心设计的实验中展示了罗莎(Rosa)在挑战稀疏奖励环境中对最先进的RS算法的优越性能。
translated by 谷歌翻译
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical value functions, operating at different temporal scales, with intrinsically motivated deep reinforcement learning. A top-level value function learns a policy over intrinsic goals, and a lower-level function learns a policy over atomic actions to satisfy the given goals. h-DQN allows for flexible goal specifications, such as functions over entities and relations. This provides an efficient space for exploration in complicated environments. We demonstrate the strength of our approach on two problems with very sparse, delayed feedback: (1) a complex discrete stochastic decision process, and (2) the classic ATARI game 'Montezuma's Revenge'.
translated by 谷歌翻译
最新专为加强学习任务而设计的算法着重于找到一个最佳解决方案。但是,在许多实际应用中,重要的是开发具有多种策略的合理代理商。在本文中,我们提出了多样性引导的政策优化(DGPO),这是一个在同一任务中发现多种策略的政策框架。我们的算法使用多样性目标来指导潜在的条件政策,以在单个培训程序中学习一系列不同的策略。具体而言,我们将算法形式化为多样性受限的优化问题和外部奖励约束优化问题的组合。我们将约束优化作为概率推理任务解决,并使用策略迭代来最大化派生的下限。实验结果表明,我们的方法有效地在各种强化学习任务中找到了各种策略。我们进一步表明,与其他基线相比,DGPO达到了更高的多样性评分,并且具有相似的样品复杂性和性能。
translated by 谷歌翻译
需要大量人类努力和迭代的奖励功能规范仍然是通过深入的强化学习来学习行为的主要障碍。相比之下,提供所需行为的视觉演示通常会提供一种更简单,更自然的教师的方式。我们考虑为代理提供了一个固定的视觉演示数据集,说明了如何执行任务,并且必须学习使用提供的演示和无监督的环境交互来解决任务。此设置提出了许多挑战,包括对视觉观察的表示,由于缺乏固定的奖励或学习信号而导致的,由于高维空间而引起的样本复杂性以及学习不稳定。为了解决这些挑战,我们开发了一种基于变异模型的对抗模仿学习(V-Mail)算法。基于模型的方法为表示学习,实现样本效率并通过实现派利学习来提高对抗性训练的稳定性提供了强烈的信号。通过涉及几种基于视觉的运动和操纵任务的实验,我们发现V-Mail以样本有效的方式学习了成功的视觉运动策略,与先前的工作相比,稳定性更高,并且还可以实现较高的渐近性能。我们进一步发现,通过传输学习模型,V-Mail可以从视觉演示中学习新任务,而无需任何其他环境交互。所有结果在内的所有结果都可以在\ url {https://sites.google.com/view/variational-mail}在线找到。
translated by 谷歌翻译
Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstandingly well on many games of the set, but very poorly in several of the most challenging games. We propose Agent57, the first deep RL agent that outperforms the standard human benchmark on all 57 Atari games. To achieve this result, we train a neural network which parameterizes a family of policies ranging from very exploratory to purely exploitative. We propose an adaptive mechanism to choose which policy to prioritize throughout the training process. Additionally, we utilize a novel parameterization of the architecture that allows for more consistent and stable learning.
translated by 谷歌翻译
一个沿着城市街道行走的人试图对世界各个方面进行建模,这很快就会被许多商店,汽车和人们遵循自己的复杂且难以理解的动态所淹没。在这种环境中的探索和导航是一项日常任务,不需要大量精神资源。是否可以将这种感官信息的消防软管转变为最小的潜在状态,这是代理在世界上成功采取行动的必要和足够的?我们具体地提出了这个问题,并提出了可控制的状态发现算法(AC-State),该算法具有理论保证,并且实际上被证明可以发现\ textit {最小可控的潜在状态},其中包含所有用于控制控制的信息代理,同时完全丢弃所有无关的信息。该算法由一个具有信息瓶颈的多步逆模型(预测遥远观察结果的动作)组成。 AC-State可以在没有奖励或示威的情况下实现本地化,探索和导航。我们证明了在三个领域中发现可控潜在状态的发现:将机器人组分散注意力(例如,照明条件和背景变化),与其他代理商一起在迷宫中进行探索,并在Matterport House Simulator中导航。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
事实证明,加固学习(RL)的自适应课程有效地制定了稳健的火车和测试环境之间的差异。最近,无监督的环境设计(UED)框架通用RL课程以生成整个环境的序列,从而带来了具有强大的Minimax遗憾属性的新方法。在问题上,在部分观察或随机设置中,最佳策略可能取决于预期部署设置中环境的基本真相分布,而课程学习一定会改变培训分布。我们将这种现象形式化为课程诱导的协变量转移(CICS),并描述了其在核心参数中的发生如何导致次优政策。直接从基本真相分布中采样这些参数可以避免问题,但阻碍了课程学习。我们提出了Samplr,这是一种Minimax遗憾的方法,即使由于CICS偏向基础培训数据,它也优化了基础真相函数。我们证明并验证了具有挑战性的领域,我们的方法在基础上的分布下保留了最佳性,同时促进了整个环境环境的鲁棒性。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
在本文中,我们介绍了潜在的探索(LGE),这是一种基于探索加固学习(RL)的探索范式的简单而通用的方法。最初引入了Go-explore,并具有强大的域知识约束,以将状态空间划分为单元。但是,在大多数实际情况下,从原始观察中汲取域知识是复杂而乏味的。如果细胞分配不足以提供信息,则可以完全无法探索环境。我们认为,可以通过利用学习的潜在表示,可以将Go-explore方法推广到任何环境,而无需细胞。因此,我们表明LGE可以灵活地与学习潜在表示的任何策略相结合。我们表明,LGE虽然比Go-explore更简单,但在多个硬探索环境上纯粹的探索方面,更强大,并且优于所有最先进的算法。 LGE实现可在https://github.com/qgallouedec/lge上作为开源。
translated by 谷歌翻译
在这项研究中,我们解决了增强学习中有效探索的问题。最常见的探索方法取决于随机行动的选择,但是这些方法在稀疏或没有奖励的环境中无法很好地工作。我们提出了基于生成的对抗网络的固有奖励模块,该模块了解观察到的状态的分布并发送一个内在的奖励,该奖励是为无法分配的状态而计算出的,以使代理人领导未开发的状态。我们在超级马里奥兄弟(Super Mario Bros)中评估了我们的方法,以获取无奖励的环境,并在蒙特祖玛(Montezuma)的报仇中为稀疏的奖励设置进行了报复,并表明我们的方法确实能够有效地探索。我们讨论了一些弱点,并通过讨论未来的作品来得出结论。
translated by 谷歌翻译