Tourette Syndrome (TS) is a behavior disorder that onsets in childhood and is characterized by the expression of involuntary movements and sounds commonly referred to as tics. Behavioral therapy is the first-line treatment for patients with TS, and it helps patients raise awareness about tic occurrence as well as develop tic inhibition strategies. However, the limited availability of therapists and the difficulties for in-home follow up work limits its effectiveness. An automatic tic detection system that is easy to deploy could alleviate the difficulties of home-therapy by providing feedback to the patients while exercising tic awareness. In this work, we propose a novel architecture (T-Net) for automatic tic detection and classification from untrimmed videos. T-Net combines temporal detection and segmentation and operates on features that are interpretable to a clinician. We compare T-Net to several state-of-the-art systems working on deep features extracted from the raw videos and T-Net achieves comparable performance in terms of average precision while relying on interpretable features needed in clinical practice.
translated by 谷歌翻译
To balance the annotation labor and the granularity of supervision, single-frame annotation has been introduced in temporal action localization. It provides a rough temporal location for an action but implicitly overstates the supervision from the annotated-frame during training, leading to the confusion between actions and backgrounds, i.e., action incompleteness and background false positives. To tackle the two challenges, in this work, we present the Snippet Classification model and the Dilation-Erosion module. In the Dilation-Erosion module, we expand the potential action segments with a loose criterion to alleviate the problem of action incompleteness and then remove the background from the potential action segments to alleviate the problem of action incompleteness. Relying on the single-frame annotation and the output of the snippet classification, the Dilation-Erosion module mines pseudo snippet-level ground-truth, hard backgrounds and evident backgrounds, which in turn further trains the Snippet Classification model. It forms a cyclic dependency. Furthermore, we propose a new embedding loss to aggregate the features of action instances with the same label and separate the features of actions from backgrounds. Experiments on THUMOS14 and ActivityNet 1.2 validate the effectiveness of the proposed method. Code has been made publicly available (https://github.com/LingJun123/single-frame-TAL).
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
时间动作本地化在视频分析中起着重要作用,该视频分析旨在将动作定位和分类在未修剪视频中。先前的方法通常可以预测单个时间尺度的特征空间上的动作。但是,低级量表的时间特征缺乏足够的语义来进行动作分类,而高级尺度则无法提供动作边界的丰富细节。为了解决这个问题,我们建议预测多个颞尺度特征空间的动作。具体而言,我们使用不同尺度的精致特征金字塔将语义从高级尺度传递到低级尺度。此外,为了建立整个视频的长时间尺度,我们使用时空变压器编码器来捕获视频帧的远程依赖性。然后,具有远距离依赖性的精制特征被送入分类器以进行粗糙的动作预测。最后,为了进一步提高预测准确性,我们建议使用框架级别的自我注意模块来完善每个动作实例的分类和边界。广泛的实验表明,所提出的方法可以超越Thumos14数据集上的最先进方法,并在ActivityNet1.3数据集上实现可比性的性能。与A2NET(tip20,avg \ {0.3:0.7 \}),sub-action(csvt2022,avg \ {0.1:0.5 \})和afsd(cvpr21,avg \ {0.3:0.7 \}) ,提出的方法分别可以提高12.6 \%,17.4 \%和2.2 \%
translated by 谷歌翻译
时间动作本地化(TAL)是识别视频中一组动作的任务,该任务涉及将开始和终点定位并对每个操作实例进行分类。现有方法通过使用预定义的锚窗或启发式自下而上的边界匹配策略来解决此任务,这些策略是推理时间的主要瓶颈。此外,主要的挑战是由于缺乏全球上下文信息而无法捕获远程动作。在本文中,我们介绍了一个无锚的框架,称为HTNET,该框架预测了一组<开始时间,结束时间,类,类>三胞胎,这些视频基于变压器体系结构。在预测粗边界之后,我们通过背景特征采样(BFS)模块和分层变压器对其进行完善,这使我们的模型能够汇总全局上下文信息,并有效利用视频中固有的语义关系。我们演示了我们的方法如何在两个TAL基准数据集上定位准确的动作实例并实现最先进的性能:Thumos14和ActivityNet 1.3。
translated by 谷歌翻译
Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content. This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving proposals to cover truth action instances with high recall and high overlap using relatively fewer proposals. To address these difficulties, we introduce an effective proposal generation method, named Boundary-Sensitive Network (BSN), which adopts "local to global" fashion. Locally, BSN first locates temporal boundaries with high probabilities, then directly combines these boundaries as proposals. Globally, with Boundary-Sensitive Proposal feature, BSN retrieves proposals by evaluating the confidence of whether a proposal contains an action within its region. We conduct experiments on two challenging datasets: ActivityNet-1.3 and THUMOS14, where BSN outperforms other state-of-the-art temporal action proposal generation methods with high recall and high temporal precision. Finally, further experiments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art temporal action detection performance.
translated by 谷歌翻译
时间动作检测(TAD)旨在确定未修剪视频中每个动作实例的语义标签和边界。先前的方法通过复杂的管道来解决此任务。在本文中,我们提出了一个具有简单集的预测管道的端到端时间动作检测变压器(TADTR)。给定一组名为“动作查询”的可学习嵌入,Tadtr可以从每个查询的视频中自适应提取时间上下文,并直接预测动作实例。为了适应TAD的变压器,我们提出了三个改进,以提高其所在地意识。核心是一个时间可变形的注意模块,在视频中有选择地参加一组稀疏的密钥片段。片段的完善机制和动作回归头旨在完善预测实例的边界和信心。 TADTR需要比以前的检测器更低的计算成本,同时保留了出色的性能。作为一个独立的检测器,它在Thumos14(56.7%地图)和HACS段(32.09%地图)上实现了最先进的性能。结合一个额外的动作分类器,它在ActivityNet-1.3上获得了36.75%的地图。我们的代码可在\ url {https://github.com/xlliu7/tadtr}上获得。
translated by 谷歌翻译
我们提出了一种新颖的形状意识的关系网络,用于内窥镜粘膜颌下粘膜释放(ESD)手术中的准确和实时地标检测。这项任务具有很大的临床意义,但由于复杂的手术环境中出血,照明反射和运动模糊而极其挑战。与现有解决方案相比,通过使用复杂的聚合方案忽略靶向对象之间的几何关系或捕获关系,所提出的网络能够实现令人满意的精度,同时通过充分利用地标之间的空间关系来保持实时性能。我们首先设计一种算法来自动生成关系关键点热量表,其能够直观地代表地标之间的空间关系的先验知识,而无需使用任何额外的手动注释工作。然后,我们开发两个互补正规计划,以逐步将先验知识纳入培训过程。虽然一个方案通过多任务学习引入像素级正则化,但另一个方案通过利用新设计的分组的一致性评估器来实现全局级正则化,该评估将关系约束以越野方式添加到所提出的网络。这两个方案都有利于训练模型,并且可以随时推动才能卸载,以实现实时检测。我们建立了一个大型内部数据集的ESD手术,用于食管癌,以验证我们提出的方法的有效性。广泛的实验结果表明,我们的方法在准确性和效率方面优于最先进的方法,更快地实现了更好的检测结果。在两个下游应用的有希望的结果进一步证实了我们在ESD临床实践中的方法的巨大潜力。
translated by 谷歌翻译
现有的时间动作检测(TAD)方法依赖于每个视频产生大量的建议。这导致由于提案生成和/或主张行动实例评估以及最终的高计算成本而导致复杂的模型设计。在这项工作中,我们首次提出了一个带有全局分割掩码(TAG)的无建议的时间动作检测模型。我们的核心想法是以完整的视频长度共同学习每个操作实例的全局细分面具。标签模型与基于常规建议的方法有显着不同,通过关注全球时间表示学习,直接在没有建议的情况下直接检测本地起点和终点的行动点。此外,通过对TAD进行整体建模,而不是在单个建议级别上进行本地建模,标签需要更简单的模型体系结构,计算成本较低。广泛的实验表明,尽管设计更简单,但标签的表现优于现有的TAD方法,在两个基准上实现了新的最新性能。重要的是,训练的速度更快约20倍,推理效率更高。我们的标签的Pytorch实现可在https://github.com/sauradip/tags上获得。
translated by 谷歌翻译
这项工作对最近的努力进行了系统的综述(自2010年以来),旨在自动分析面对面共同关联的人类社交互动中显示的非语言提示。专注于非语言提示的主要原因是,这些是社会和心理现象的物理,可检测到的痕迹。因此,检测和理解非语言提示至少在一定程度上意味着检测和理解社会和心理现象。所涵盖的主题分为三个:a)建模社会特征,例如领导力,主导,人格特质,b)社会角色认可和社会关系检测以及c)群体凝聚力,同情,rapport和so的互动动态分析向前。我们针对共同的相互作用,其中相互作用的人永远是人类。该调查涵盖了各种各样的环境和场景,包括独立的互动,会议,室内和室外社交交流,二元对话以及人群动态。对于他们每个人,调查都考虑了非语言提示分析的三个主要要素,即数据,传感方法和计算方法。目的是突出显示过去十年的主要进步,指出现有的限制并概述未来的方向。
translated by 谷歌翻译
Detecting actions in untrimmed videos is an important yet challenging task. In this paper, we present the structured segment network (SSN), a novel framework which models the temporal structure of each action instance via a structured temporal pyramid. On top of the pyramid, we further introduce a decomposed discriminative model comprising two classifiers, respectively for classifying actions and determining completeness. This allows the framework to effectively distinguish positive proposals from background or incomplete ones, thus leading to both accurate recognition and localization. These components are integrated into a unified network that can be efficiently trained in an end-to-end fashion. Additionally, a simple yet effective temporal action proposal scheme, dubbed temporal actionness grouping (TAG) is devised to generate high quality action proposals. On two challenging benchmarks, THUMOS14 and ActivityNet, our method remarkably outperforms previous state-of-the-art methods, demonstrating superior accuracy and strong adaptivity in handling actions with various temporal structures. 1
translated by 谷歌翻译
由于字体,大小,颜色和方向的各种文本变化,任意形状的场景文本检测是一项具有挑战性的任务。大多数现有基于回归的方法求助于回归文本区域的口罩或轮廓点以建模文本实例。但是,回归完整的口罩需要高训练的复杂性,并且轮廓点不足以捕获高度弯曲的文本的细节。为了解决上述限制,我们提出了一个名为TextDCT的新颖的轻巧锚文本检测框架,该框架采用离散的余弦变换(DCT)将文本掩码编码为紧凑型向量。此外,考虑到金字塔层中训练样本不平衡的数量,我们仅采用单层头来进行自上而下的预测。为了建模单层头部的多尺度文本,我们通过将缩水文本区域视为正样本,并通过融合来介绍一个新颖的积极抽样策略,并通过融合来设计特征意识模块(FAM),以实现空间意识和规模的意识丰富的上下文信息并关注更重要的功能。此外,我们提出了一种分割的非量最大抑制(S-NMS)方法,该方法可以过滤低质量的掩模回归。在四个具有挑战性的数据集上进行了广泛的实验,这表明我们的TextDCT在准确性和效率上都获得了竞争性能。具体而言,TextDCT分别以每秒17.2帧(FPS)和F-measure的F-MEASIE达到85.1,而CTW1500和Total-Text数据集的F-Measure 84.9分别为15.1 fps。
translated by 谷歌翻译
本文介绍了Houghnet,这是一种单阶段,无锚,基于投票的,自下而上的对象检测方法。受到广义的霍夫变换的启发,霍尼特通过在该位置投票的总和确定了某个位置的物体的存在。投票是根据对数极极投票领域的近距离和长距离地点收集的。由于这种投票机制,Houghnet能够整合近距离和远程的班级条件证据以进行视觉识别,从而概括和增强当前的对象检测方法,这通常仅依赖于本地证据。在可可数据集中,Houghnet的最佳型号达到$ 46.4 $ $ $ ap $(和$ 65.1 $ $ $ ap_ {50} $),与自下而上的对象检测中的最先进的作品相同,超越了最重要的一项 - 阶段和两阶段方法。我们进一步验证了提案在其他视觉检测任务中的有效性,即视频对象检测,实例分割,3D对象检测和人为姿势估计的关键点检测以及其他“图像”图像生成任务的附加“标签”,其中集成的集成在所有情况下,我们的投票模块始终提高性能。代码可在https://github.com/nerminsamet/houghnet上找到。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
当前的时空动作管检测方法通常将一个给定键框的边界框提案扩展到附近帧的3D颞轴和池特征。但是,如果演员的位置或形状通过大型的2D运动和可变性,由于大型摄像机运动,大型演员形状变形,快速演员的动作等,这种合并就无法积累有意义的时空特征。在这项工作中,我们旨在研究在大动作下的动作检测中观察到Cuboid感知特征聚集的性能。此外,我们建议通过跟踪参与者并沿各个轨道进行时间特征聚集来增强演员特征表示。我们在各种固定时间尺度的动作管/轨道框之间使用相交的行动者(IOU)定义了演员运动。随着时间的推移,具有较大运动的动作将导致较低的IOU,并且较慢的动作将保持更高的IOU。我们发现,轨道感知功能聚集始终取得了巨大的改善,尤其是对于与Cuboid感知的基线相比,在大型运动下进行的动作。结果,我们还报告了大规模多运动数据集的最先进。
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
在本文中,我们介绍了Siammask,这是一个实时使用相同简单方法实时执行视觉对象跟踪和视频对象分割的框架。我们通过通过二进制细分任务来增强其损失,从而改善了流行的全面暹罗方法的离线培训程序。离线训练完成后,SiamMask只需要一个单个边界框来初始化,并且可以同时在高框架速率下进行视觉对象跟踪和分割。此外,我们表明可以通过简单地以级联的方式重新使用多任务模型来扩展框架以处理多个对象跟踪和细分。实验结果表明,我们的方法具有较高的处理效率,每秒约55帧。它可以在视觉对象跟踪基准测试中产生实时最新结果,同时以高速进行视频对象分割基准测试以高速显示竞争性能。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
Recent studies have found that pain in infancy has a significant impact on infant development, including psychological problems, possible brain injury, and pain sensitivity in adulthood. However, due to the lack of specialists and the fact that infants are unable to express verbally their experience of pain, it is difficult to assess infant pain. Most existing infant pain assessment systems directly apply adult methods to infants ignoring the differences between infant expressions and adult expressions. Meanwhile, as the study of facial action coding system continues to advance, the use of action units (AUs) opens up new possibilities for expression recognition and pain assessment. In this paper, a novel AuE-IPA method is proposed for assessing infant pain by leveraging different engagement levels of AUs. First, different engagement levels of AUs in infant pain are revealed, by analyzing the class activation map of an end-to-end pain assessment model. The intensities of top-engaged AUs are then used in a regression model for achieving automatic infant pain assessment. The model proposed is trained and experimented on YouTube Immunization dataset, YouTube Blood Test dataset, and iCOPEVid dataset. The experimental results show that our AuE-IPA method is more applicable to infants and possesses stronger generalization ability than end-to-end assessment model and the classic PSPI metric.
translated by 谷歌翻译