联合机器学习(FL)允许将敏感数据中的模型集体列车,而不是客户的模型,而不是需要共享其培训数据。然而,尽管对FL的研究有所关注,但概念仍然缺乏广泛的采用。其中一个主要原因是实现FL系统的巨大挑战,即同时实现所有参与客户的公平,完整性和隐私保存。为了解决解决这个问题,我们的论文提出了一种包含区块链技术,局部差异隐私和零知识证据的流系统。我们的实施具有多元线性回归的概念验证说明了这些最先进的技术可以组合到一个对准可扩展和透明系统中的经济激励,信任和机密性要求的流系统。
translated by 谷歌翻译
The advent of Federated Learning (FL) has ignited a new paradigm for parallel and confidential decentralized Machine Learning (ML) with the potential of utilizing the computational power of a vast number of IoT, mobile and edge devices without data leaving the respective device, ensuring privacy by design. Yet, in order to scale this new paradigm beyond small groups of already entrusted entities towards mass adoption, the Federated Learning Framework (FLF) has to become (i) truly decentralized and (ii) participants have to be incentivized. This is the first systematic literature review analyzing holistic FLFs in the domain of both, decentralized and incentivized federated learning. 422 publications were retrieved, by querying 12 major scientific databases. Finally, 40 articles remained after a systematic review and filtering process for in-depth examination. Although having massive potential to direct the future of a more distributed and secure AI, none of the analyzed FLF is production-ready. The approaches vary heavily in terms of use-cases, system design, solved issues and thoroughness. We are the first to provide a systematic approach to classify and quantify differences between FLF, exposing limitations of current works and derive future directions for research in this novel domain.
translated by 谷歌翻译
由于机器学习(ML)模型变得越来越复杂,其中一个中央挑战是它们在规模的部署,使得公司和组织可以通过人工智能(AI)创造价值。 ML中的新兴范式是一种联合方法,其中学习模型部分地将其交付给一组异构剂,允许代理与自己的数据一起培训模型。然而,模型的估值问题,以及数据/模型的协作培训和交易的激励问题,在文献中获得了有限的待遇。本文提出了一种在基于信任区块基网络上交易的ML模型交易的新生态系统。买方可以获得ML市场的兴趣模型,兴趣的卖家将本地计算花在他们的数据上,以增强该模型的质量。在这样做时,考虑了本地数据与训练型型号的质量之间的比例关系,并且通过分布式数据福价(DSV)估计了销售课程中的训练中的数据的估值。同时,通过分布式分区技术(DLT)提供整个交易过程的可信度。对拟议方法的广泛实验评估显示出具有竞争力的运行时间绩效,在参与者的激励方面下降了15 \%。
translated by 谷歌翻译
推荐系统已广泛应用于不同的应用领域,包括能量保存,电子商务,医疗保健,社交媒体等。此类应用需要分析和挖掘大量各种类型的用户数据,包括人口统计,偏好,社会互动等,以便开发准确和精确的推荐系统。此类数据集通常包括敏感信息,但大多数推荐系统专注于模型的准确性和忽略与安全性和用户隐私相关的问题。尽管使用不同的风险减少技术克服这些问题,但它们都没有完全成功,确保了对用户的私人信息的密码安全和保护。为了弥合这一差距,区块链技术作为推动推荐系统中的安全和隐私保存的有希望的策略,不仅是因为其安全性和隐私性突出特征,而且由于其恢复力,适应性,容错和信任特性。本文介绍了涵盖挑战,开放问题和解决方案的基于区块链的推荐系统的整体综述。因此,引入了精心设计的分类,以描述安全和隐私挑战,概述现有框架并在使用区块链之前讨论其应用程序和利益,以指示未来的研究机会。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
通过参与大规模联合学习(FL)优化的设备的异构性质的激励,我们专注于由区块链(BC)技术赋予的异步服务器的FL解决方案。与主要采用的FL方法相比,假设同步操作,我们提倡一个异步方法,由此,模型聚合作为客户端提交本地更新。异步设置与具有异构客户端的实际大规模设置中的联合优化思路非常适合。因此,它可能导致通信开销和空闲时段的效率提高。为了评估启用了BC启用的FL的学习完成延迟,我们提供了基于批量服务队列理论的分析模型。此外,我们提供仿真结果以评估同步和异步机制的性能。涉及BC启用的流量的重要方面,例如网络大小,链路容量或用户要求,并分析并分析。随着我们的结果表明,同步设置导致比异步案例更高的预测精度。然而,异步联合优化在许多情况下提供了更低的延迟,从而在处理大数据集时成为一种吸引力的FL解决方案,严重的时序约束(例如,近实时应用)或高度不同的训练数据。
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
Vanilla联合学习(FL)依赖于集中的全球聚合机制,并假设所有客户都是诚实的。这使得FL减轻单一失败和不诚实客户的挑战。由于FL和区块链的好处(例如,民主,激励性和不变性),FL的设计理念中的这些即将到来的挑战呼吁基于区块链的联邦学习(BFL)。但是,香草BFL中的一个问题是,它的功能不会以动态的方式遵循采用者的需求。此外,Vanilla BFL依赖于无法验证的客户的自我报告的贡献,例如数据大小,因为在FL中不允许检查客户的原始数据是否存在隐私问题。我们设计和评估了一种新型的BFL框架,并以更大的灵活性和激励机制(称为Fair-BFL)解决了香草BFL中确定的挑战。与现有作品相反,Fair-BFL通过模块化设计提供了前所未有的灵活性,使采用者可以按照动态的方式调整其业务需求的能力。我们的设计说明了BFL量化每个客户对全球学习过程的贡献的能力。这种量化提供了一个合理的指标,可以在联邦客户之间分配奖励,并帮助发现可能毒害全球模型的恶意参与者。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
我们提出了一个用于机器学习应用的基于区块链的安全数据交易市场的Omnilytics。利用omnilytics,许多分布式数据所有者可以贡献他们的私人数据,以集体培训某些型号所有者请求的ML模型,并获得数据贡献的补偿。 Omnilytics使这种模型培训能够同时为奇怪的数据所有者提供1)模型安全; 2)对奇怪的模型和数据所有者的数据安全; 3)对恶意数据所有者的弹性,为毒药模型培训提供有错误的结果; 4)打算逃避付款的恶意模型所有者的弹性。 Omnilytics被实施为一个区块链智能合同,以保证付款的原子。在omnilytics中,模型所有者将其模型分成私人和公共部分,并在合同上发布公共部分。通过执行合同,参与的数据所有者将其当地培训的模型安全地汇总以更新模型所有者的公共模式,并通过合同获得报销。我们在以Ethereum区块链中实施了Omnilytics的工作原型,并在各种参数组合下进行了广泛的实验,以测量其天然气成本,执行时间和模型质量。为了在MNIST数据集上训练CNN,MO能够将其模型精度从平板ChangchConsion Time的500毫秒内的62%提升到83%。这证明了Omnilytics对实际部署的有效性。
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
物联网的最新研究已被广泛应用于工业实践,促进了数据和连接设备的指数增长。此后,各方通过某些数据共享策略将访问数据驱动的AI模型。但是,当前大多数培训程序都依赖于集中式数据收集策略和单个计算服务器。但是,这样的集中计划可能会导致许多问题。存储在集中数据库中的客户数据可能会被篡改,因此数据的出处和真实性是不能合理的。一旦出现上述安全问题,训练有素的AI模型的可信度将是值得怀疑的,甚至在测试阶段也可能产生不利的结果。最近,已经探索了行业4.0和Web 3.0的两种核心技术区块链和AI,以促进分散的AI培训策略。为了实现这一目的,我们提出了一种称为Appflchain的新系统体系结构,即基于Hyperledger织物的区块链和联合学习范式的集成体系结构。我们提出的新系统允许不同的各方共同培训AI模型,其客户或利益相关者由基于联盟区块链的网络连接。由于用户不需要向服务器共享敏感的个人信息,因此我们的新系统可以保持高度的安全性和隐私性。为了进行数值评估,我们模拟了现实世界的场景,以说明Appflchain的整个操作过程。仿真结果表明,利用联盟区块链和联邦学习的特征,Appflchain可以证明有利的特性,包括不可耐受性,可追溯性,隐私保护和可靠的决策。
translated by 谷歌翻译
联邦学习(FL)的最新进展为大规模的分布式客户带来了大规模的机器学习机会,具有绩效和数据隐私保障。然而,大多数当前的工作只关注FL中央控制器的兴趣,忽略了客户的利益。这可能导致不公平,阻碍客户积极参与学习过程并损害整个流动系统的可持续性。因此,在佛罗里达州确保公平的主题吸引了大量的研究兴趣。近年来,已经提出了各种公平知识的FL(FAFL)方法,以努力实现不同观点的流体公平。但是,没有全面的调查,帮助读者能够深入了解这种跨学科领域。本文旨在提供这样的调查。通过审查本领域现有文献所采用的基本和简化的假设,提出了涵盖FL的主要步骤的FAFL方法的分类,包括客户选择,优化,贡献评估和激励分配。此外,我们讨论了实验评估FAFL方法表现的主要指标,并建议了一些未来的未来研究方向。
translated by 谷歌翻译
由于机器学习(ML)技术和应用正在迅速改变许多计算领域,以及与ML相关的安全问题也在出现。在系统安全领域中,已经进行了许多努力,以确保ML模型和数据机密性。ML计算通常不可避免地在不受信任的环境中执行,并因此需要复杂的多方安全要求。因此,研究人员利用可信任的执行环境(TEES)来构建机密ML计算系统。本文通过在不受信任的环境中分类攻击向量和缓解攻击载体和缓解来进行系统和全面的调查,分析多方ML安全要求,并讨论相关工程挑战。
translated by 谷歌翻译
联邦学习的出现在维持隐私的同时,促进了机器学习模型之间的大规模数据交换。尽管历史悠久,但联邦学习正在迅速发展,以使更广泛的使用更加实用。该领域中最重要的进步之一是将转移学习纳入联邦学习,这克服了主要联合学习的基本限制,尤其是在安全方面。本章从安全的角度进行了有关联合和转移学习的交集的全面调查。这项研究的主要目标是发现可能损害使用联合和转移学习的系统的隐私和性能的潜在脆弱性和防御机制。
translated by 谷歌翻译